


Lecture Notes in Computer Science 3335
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Miroslaw Malek Manfred Reitenspieß
Jörg Kaiser (Eds.)

Service Availability

First International Service Availability Symposium, ISAS 2004
Munich, Germany, May 13-14, 2004
Revised Selected Papers

13



Volume Editors

Miroslaw Malek
Humboldt-Universität Berlin
Institut für Informatik Rechnerorganisation und Kommunikation
Unter den Linden 6, 10099 Berlin, Germany
E-mail: malek@informatik.hu-berlin.de

Manfred Reitenspieß
Fujitsu Siemens Computers
Munich, Germany
E-mail: manfred.reitenspiess@fujitsusimens.com

Jörg Kaiser
University of Ulm
Department of Computer Structures, Faculty of Computer Science
James-Franck-Ring, 89069 Ulm, Germany
E-mail: kaiser@informatik.uni-ulm.de

Library of Congress Control Number: 2004117793

CR Subject Classification (1998): C.2, H.4, H.3, I.2.11, D.2, H.5, K.4.4, K.6

ISSN 0302-9743
ISBN 3-540-24420-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11378730 06/3142 5 4 3 2 1 0



Open Specifications for Service AvailabilityTM

Manfred Reitenspieß1, ISAS 2005 General Chair

The continuous availability of services has always been ametric for the success of
telecommunications applications: the phone system must always be operational.
Today, IP data network providers and enterprise IT departments face the same
requirements. Service availability architectures and feature sets have tradition-
ally been highly proprietary and customized to individual telecom equipment
provider and application requirements. Each application and hardware platform
had to be designed to fit with the specific service availability environment.

Today’s market dynamics require companies to be able to raise the bar and
meet new and aggressive time-to-market goals. By standardizing the interfaces
for high-availability functions and management, the Service Availability Forum
aims to create an open, off-the-shelf infrastructure for implementers and opera-
tors of highly available services.

The Service Availability Forum is unifying functionality to deliver a con-
sistent set of interfaces, thus enabling consistency for applications developers
and network architects alike. This means significantly greater reuse and a much
quicker turnaround for the introduction of new products.

As the telecom and IT market recovery accelerates, meeting both functional
and time-to-market goals will be essential for success. The Service Availability
Forum offers a way forward for maximizing time-to-market advantage through
the adoption of a consistent and standardized interface set. The set of open
standard software building blocks includes functions for managing the hardware
platform components (Hardware Platform Interface), high-availability service
functions used by applications (Application Interface Specification), and func-
tions for their associated management (System Management Services).

The International Service Availability Symposium 2004 brought together sci-
entists, technical experts and strategists to discuss availability under a number
of aspects:
1. Availability in the Internet and databases
2. High availability based on Service Availability Forum specifications
3. Measurements, management and methodologies
4. Networks of dependable systems
5. Standards and solutions for high availability

The Service Availability Forum is a consortium of industry-leading commu-
nications and computing companies working together to develop and publish
high availability and management software interface specifications. The Service
Availability Forum then promotes and facilitates specification adoption by the
industry.

1 President Service Availability Forum, Fujitsu Siemens Computers, Munich, Ger-
many; manfred.reitenspiess@fujitsu-siemens.com



Program Chair’s Message

The 1st International Service Availability Symposium (ISAS 2004) was the first
event of its kind where a forum was provided for academic and industrial re-
searchers and engineers who focus on next-generation solutions where services
will dominate and their dependability will be expected and demanded in virtu-
ally all applications.

As with the birth of a new baby so it was with the first symposium: It was
somewhat an unpredictable event and we did not really know how many paper
submissions to expect. We were nicely surprised with 28 (including three invited
ones), considering the rather specialized topic and short lead time to organize
this meeting. We will broaden the scope of the Symposium next year by making
it clear that anything that concerns computer services might be worthwhile
presenting at ISAS to a good mix of academic and industrial audiences.

A significantly increased interest in dependable services should not be a sur-
prise as we are expecting a paradigm shift where “everything” may become a
service. Computer evolution began with data types and formats. Then the con-
cept of objects was discovered and transformed later into components. A set of
components (including a set of one as well) forms a service and this concept will
dominate computing, ranging from sensor networks to grid computing, for the
foreseeable future. In order to make services a viable replacement and/or exten-
sion to existing forms of computing they have to be highly available, reliable and
secure. The main computer and communication companies, service providers,
and academics are searching for innovative ways of increasing the dependabil-
ity of services that are growing in complexity and will use mainly distributed
resources. This trend will continue as computer services are bound to pervade
all aspects of our lives and lifestyles. No matter whether we call the computing
services of the future “autonomic,” “trustworthy” or simply “reliable/available”
the fact of the matter is that they will have to be there seven days a week, 24
hours a day, independent of the environment, location and the mode of use or
the education level of the user. This is an ambitious challenge which will have to
be met. Service availability cannot be compromised; it will have to be delivered.
The economic impact of unreliable, incorrect services is simply unpredictable.

All submissions were subject to a rigorous review process. Hence only 15 pa-
pers were accepted. Unfortunately, many good, worthwhile manuscripts did not
make it into the program due to the high quality threshold set up by the Program
Committee. Each paper was reviewed by three Program Committee members.
I would like to thank wholeheartedly our PC members whose hard work was
exemplary. Those who spent time at the virtual PC meeting deserve an addi-
tional recognition. Our paper selection went extremely smoothly thanks to the
tremendous effort of the reviewers and solid support from my secretary Sabine
Becker and my Ph.D. student Nikola Milanovic of Humboldt University Berlin.
Also, Prof. Joerg Kaiser from the University of Ulm deserves a special credit



VIII Organization

for editing the symposium’s proceedings and preparing the Springer volume of
Lecture Notes in Computer Science. I thank all of them very much. And last
but not least I would like to express my gratitude to Manfred Reitenspieß whose
involvement and support were very helpful throughout the program preparation
process.

The attendees enjoyed the final program as well as the lively presentations,
got involved in many heated discussions, struck up new frienships, and hopefully,
got inspired to contribute to next year’s symposium to be held in Berlin on April
25-26, 2005.

Munich, May 13, 2004 ISAS 2004 Program Chair
Miroslaw Malek

Humboldt–Universität Berlin
Institut für Informatik

malek@informatik.hu-berlin.de

,



Table of Contents

ISAS 2004

Architecture of Highly Available Databases
Sam Drake, Wei Hu, Dale M. McInnis, Martin Sköld,
Alok Srivastava, Lars Thalmann, Matti Tikkanen,
Øystein Torbjørnsen, Antoni Wolski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Data Persistence in Telecom Switches
S.G. Arun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Distributed Redundancy or Cluster Solution? An Experimental
Evaluation of Two Approaches for Dependable Mobile Internet Services

Thibault Renier, Hans–Peter Schwefel, Marjan Bozinovski,
Kim Larsen, Ramjee Prasad, Robert Seidl . . . . . . . . . . . . . . . . . . . . . . . . . 33

OpenHPI: An Open Source Reference Implementation of the SA Forum
Hardware Platform Interface

Sean Dague . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Quality of Service Control by Middleware
Heinz Reisinger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Benefit Evaluation of High–Availability Middleware
Jürgen Neises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A Measurement Study of the Interplay Between Application Level
Restart and Transport Protocol

Philipp Reinecke, Aad van Moorsel, Katinka Wolter . . . . . . . . . . . . . . . . 86

Service–Level Management of Adaptive Distributed Network
Applications

K. Ravindran, Xiliang Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A Methodology on MPLS VPN Service Management with Resilience
Constraints

Jong–Tae Park, Min–Hee Kwon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Higly–Available Location–Based Services in Mobile Environments
Peter Ibach, Matthias Horbank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



X Table of Contents

On Enhancing the Robustness of Commercial Operating Systems
Andréas Johansson, Adina Sârbu, Arshad Jhumka, Neeraj Suri . . . . . . 148

A Modular Approach for Model–Based Dependability Evaluation of a
Class of Systems

Stefano Porcarelli, Felicita Di Giandomenico, Paolo Lollini,
Andrea Bondavalli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Rolling Upgrades for Continuous Services
Antoni Wolski, Kyösti Laiho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

First Experience of Conformance Testing an Application Interface
Specification Implementation

Francis Tam, Kari Ahvanainen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

On the Use of the SA Forum Checkpoint and AMF Services
Stéphane Brossier, Frédéric Herrmann, Eltefaat Shokri . . . . . . . . . . . . . 200

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213



 

M. Malek et al. (Eds.): ISAS 2004, LNCS 3335, pp. 1 – 16, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Architecture of Highly Available Databases 

Sam Drake1, Wei Hu2, Dale M. McInnis3, Martin Sköld4, Alok Srivastava2, 
Lars Thalmann4, Matti Tikkanen5, Øystein Torbjørnsen6, and Antoni Wolski7 

1 TimesTen, Inc, 800 W. El Camino Real, Mountain View, CA 94040, USA 
drake@timesten.com 

2 Oracle Corporation, 400 Oracle Parkway, Redwood Shores, CA 94065, USA 
{wei.hu, alok.srivastava}@oracle.com 

3 IBM Canada Ltd., 8200 Warden Ave. C4/487, Markham ON, Canada L6G 1C7 
dmcinnis@ca.ibm.com 

4 MySQL AB, Bangårdsgatan 8, S-753 20 Uppsala, Sweden 
{mskold,lars}@mysql.com 

5 Nokia Corporation, P.O.Box 407, FIN-00045 Nokia Group, Finland 
matti.j.tikkanen@nokia.com 

6 Sun Microsystems, Haakon VII gt 7B, 7485 Trondheim, Norway 
oystein.torbjornsen@sun.com 

7 Solid Information Technology, Merimiehenkatu 36D, FIN-00150 Helsinki, Finland 
antoni.wolski@solidtech.com 

Abstract. This paper describes the architectures that can be used to build highly 
available database management systems. We describe these architectures along 
two dimensions – process redundancy and data redundancy. Process redun-
dancy refers to the management of redundant processes that can take over in 
case of a process or node failure. Data redundancy refers to the maintenance of 
multiple copies of the underlying data. We believe that the process and data re-
dundancy models can be used to characterize most, if not all, highly available 
database management systems. 

1   Introduction 

Over the last twenty years databases have proliferated in the world of general data 
processing because of benefits due to reduced application developments costs, pro-
longed system life time and preserving of data resources, all of which translate to 
cost-saving in system development and maintenance. What makes databases perva-
sive is a database management system (DBMS) offering a high-level data access 
interface that hides intricacies of access methods, concurrency control, query optimi-
zation and recovery, from application developers. During the last ten years general-
ized database systems have also been making inroads into industrial and embedded 
systems, including telecommunications systems, because of the significant cost-sav-
ings that can be realized. 

As databases are deployed in these newer environments, their availability has to 
meet the levels attained by other components of a system. For example, if a total 
system has to meet the 'five nines' availability requirements (99.999%), any single 
component has to meet still more demanding requirements. It is not unusual to require 
that the database system alone can meet the 'six nines' (99.9999%) availability 



2 S. Drake et al. 

 

requirement. This level of availability leaves only 32 seconds of allowed downtime 
over a span of a year. It is easy to understand that under such stringent requirements, 
all failure-masking activities (switchover, restart etc.) have to last at most single 
seconds rather than minutes. Such databases are called Highly Available (HA) 
Databases and the systems to facilitate them are called highly available database 
management systems (HA-DBMS). 

An HA-DBMS operates in a way similar to HA applications: high availability is 
achieved by process redundancy several process instances are running at the same 
time, typically, in a hardware environment of a multi-node cluster. In addition to one 
or more active processes (Actives) running a service, there are standby processes, or 
redundant active processes, running at other computer nodes, ready to take over 
operation (and continue the service), should the active process or other encompassing 
part fail (Standbys). Database processes involve data whose state and availability is 
crucial to successful service continuation. Therefore we talk about data redundancy, 
too, having the goal of making data available in the presence of failures of compo-
nents holding the data. Models of process and data redundancy applied in highly 
available databases are discussed in this paper. 

Product and company names that are used in this paper may be registered trade-
marks of the respective owners. 

2   HA-DBMS for Building Highly Available Applications 

In addition to the database service itself, a highly available database brings another 
advantage to the HA framework environment. Just as a traditional database system 
frees developers from mundane programming of data storage and access, an HA-
DBMS frees the developers of HA applications from some low level HA program-
ming. To illustrate this, let us have a look at two situations. In Fig. 1, an application is 
running in an HA framework such as the SA Forum’s Availability Management 
Framework (AMF) [1].  

 

Node A (active)

AMF AMF

Node B (standby)

AIS-compliant
interface

application
checkpoint

App App’

 

Fig. 1.  An application running within AMF 



 Architecture of Highly Available Databases 3 

 

Assume that the application is run in an active and a standby component (process). 
The application components are SA-aware meaning that they are connected to AMF 
in a way following the SA Forum Application Interface Specification (AIS) [1]. 

One demanding aspect of HA programming is to make sure that the application 
state is maintained over failovers. To guarantee this, application checkpointing has to 
be programmed into the application. The SA Forum AIS, for example, offers a check-
point service for this purpose. Decisions have to be made about what to checkpoint 
and when. Also the code for reading checkpoints and recovering the application states 
after a failover has to be produced.  

Another situation is shown in Fig. 2. In this case, the application uses the local 
database to store the application state, by using regular database interfaces. 

 

Node A (active)

AMF AMF

Node B (standby)

AIS-compliant
interface

App App’

HA-DBMSHA 
database

Database
interface

 

Fig. 2. A database application running within AMF 

Because we deal with an HA-DBMS here, the latest consistent database state is 
always available after the failover at the surviving node. It is the database that does all 
the application checkpointing in this case. All this happens in real time and transpar-
ently. Additionally, as database systems operate in a transactional way preserving 
atomicity and consistency of elementary units of work (transactions), the database 
preserves transactional consistency over failovers, too. This way, an HA application 
programmer is freed from complex checkpoint and recovery programming. By 
bringing another level of abstraction into high-availability systems, HA-DBMS makes 
it easier to build highly available applications. 

It should be noted, however, that the situation pictured in Fig. 2 is not always 
attainable. The application may have hard real-time (absolute deadlines) or soft real-
time latency requirements that cannot be met by the database. Failover time of the 
database may be a limiting factor, too, if failover times below 100 ms are required. 
Finally, the program state to be preserved may not yield to database storage model. 
Nevertheless, the more application data is stored in a database, the more redundancy 
transparency is achieved. 



4 S. Drake et al. 

 

3   HA Database Redundancy Models 

Highly available database systems employ a number of redundancy concepts. All HA-
DBMSs rely on having redundant database processes. When a database process dies 
(e.g., due to node failure), another database process can take over service. To provide 
correctness, each redundant process must see the same set of updates to the database. 
There are basically two means of ensuring this: one technique, replication, relies on 
the database processes to explicitly transfer updates among each other. Depending on 
the implementation, each replica can store its copy of the data either in main-memory 
or on disk. Replication is not exclusively done between individual databases. In dis-
tributed databases, one database is managed by several database processes on differ-
ent nodes, with possible intra-database replication between them.  

An alternate means for ensuring that all the redundant database processes see the 
same set of updates to the database is to rely on a shared disk system in which all the 
processes can access the same set of disks. Since all the processes can access the same 
set of disks, the database processes do not need to explicitly replicate updates. 
Instead, all the processes always have a single, coherent view of the data. Note that a 
shared disk system also has redundancy. However, it is built-in at lower levels  e.g., 
via RAID or by network-based remote mirroring. 

The two approaches introduced above may be mapped to two known general 
DBMS architectures: shared-nothing and shared-disk [8], respectively. In this paper 
we take a more focused point of view on DBMS architectures: we concentrate exclu-
sively on means to achieve high availability. 

Several redundancy models are possible in an HA-DBMS and these are defined 
below. We distinguish between process redundancy which defines availability of the 
database processes and data redundancy which specifies, for replication-based solu-
tions, the number of copies of the data that are explicitly maintained. Both process 
redundancy and data redundancy are necessary to provide a HA Database Service.  

3.1   Process Redundancy 

Process redundancy in an HA-DBMS allows the DBMS to continue operation in the 
presence of process failures. As we’ll see later, most process redundancy models can 
be implemented by both shared-disk and replication-based technologies. 

A process which is in the active state is currently providing (or is capable of pro-
viding) database service. A process which is in the standby state is not currently pro-
viding service but prepared to take over the active state in a rapid manner, if the cur-
rent active service unit becomes faulty. This is called a failover. In some cases, a new 
type of process, a spare process (or, Spare) may be used. A spare process may be 
implemented as either a running component which has not been assigned any work-
load or as a component which has been defined but which has not been instantiated. 
A spare may be elevated to Active or Standby after proper initialization. 

Process redundancy brings the question of how (or if) redundancy transparency is 
maintained in the HA-DBMS. Of all running processes, some may be active (i.e. 
providing full service) and some not. In the case of failovers active processes may 
change. The task of finding relevant active processes may either be the responsibility of 
applications, or a dedicated software layer may take care of redundancy transparency. 



 Architecture of Highly Available Databases 5 

 

3.2   Data Redundancy 

Data redundancy is also required for high availability. Otherwise, the loss of a single 
copy of the data would render the database unavailable. Data redundancy can be 
provided at either the physical or the logical level. 

3.3   Physical Data Redundancy 

Physical data redundancy refers to relying on software and/or hardware below the 
database to maintain multiple physical copies of the data. From the perspective of the 
database, there appears to be a single copy of the data. Some examples of physical 
data redundancy include: disk mirroring, RAID, remote disk mirroring, and replicated 
file systems. 

All these technologies share the common attribute that they maintain a separate 
physical copy of the data at a possibly different geography. When the primary copy of 
the data is lost, the database processes use another copy of the data. These technolo-
gies can differ in terms of the failure transparency that is supported. Disk mirroring 
and RAID, for example, make physical disk failures completely transparent to the 
database. 

Physical data redundancy is frequently combined with process redundancy by 
using a storage area network. This allows multiple nodes to access the same physical 
database. If one database server fails (due to a software fault or a hardware fault), the 
database is still accessible from the other nodes. These other nodes can then continue 
service.  

3.4   Logical Data Redundancy Using Replication 

Logical data redundancy refers to the situation where the database explicitly main-
tains multiple copies of the data. Transactions applied to a primary database D are 
replicated to a secondary database D’ which is more or less up-to-date depending on 
the synchrony of the replication protocol in the HA Database. In addition to inter-
database replication, intra-database replication is used in distributed database systems 
to achieve high availability using just one database. Note that we speak about replica-
tion in general terms since the replication scheme is vendor specific (based on the 
assumption that both database servers are from the same vendor). The replication can 
be synchronous or asynchronous, be based on forwarding logs or direct replication as 
part of the transaction, transactions can be batched and possibly combined with group 
commits. The method chosen depends on the database product and the required level 
of safeness [2]. With a 1-safe replication (“asynchronous replication”) transactions are 
replicated after they have been committed on the primary. With a 2-safe replication 
(“synchronous replication”) the transactions are replicated to the secondary, but not 
yet committed, before acknowledging commit on the primary. With a 2-safe commit-
ted replication transactions are replicated and committed to the secondary before 
acknowledging commit on the primary. In the very safe replication all operations but 
reads are disabled if either the primary or the secondary becomes unavailable. An 
overview 1-safe and 2-safe methods is given in [14]. Various optimizations are pro-
posed in [5],[4], [10] and [21]. Although most of the work on safeness-providing 
methods has been done in the context of remote backup, the results are applicable to 
in-cluster operation too. 



6 S. Drake et al. 

 

4   Data Redundancy Models 

For the rest of this paper, data redundancy refers to logical data redundancy. It repre-
sents the number of distinct copies of data that are maintained by the database proc-
esses themselves via replication. It does not count the copies that may be maintained 
by any underlying physical data redundancy models. For example, two copies of the 
data that is maintained by a disk array or by a host-based volume manager would be 
counted as one copy for the sake of this discussion, while two copies of the data 
maintained by the database would count as two. Note that in both cases, the loss of 
one copy of the data can be handled transparently without loss of availability. 

We discuss data redundancy models in detail first because this is an area that is 
fairly unique to HA-DBMSes. 

4.1   Database Fragments, Partitioning, and Replication of Fragments 

To define the data redundancy models we need to define what we are actually repli-
cating, i.e. database fragments1. Database fragmentation is a decomposition of a 
database D into fragments P1...Pn that must fulfill the following requirements: 

1. Completeness. Any data existing in the database must be found in some 
fragment. 

2. Reconstruction. It should be possible to reconstruct the complete database from 
the fragments. 

3. Disjointness. Any data found in one fragment must not exist in any other 
fragment2. 

The granularity of a fragment is typically expressed in terms of the data model 
used. In relational databases, fragments may be associated with complete SQL 
schemas (called also catalogs) or sets of tables thereof. The lowest granularity 
achieved is usually called horizontal or vertical fragmentation where “horizontal” 
refers to dividing tables by rows and “vertical” by columns. Note that this definition 
of fragmentation does not exclude viewing the database as one entity if this is a 
required logical view of the database. 

A non-replicated, partitioned database contains fragments that are allocated to 
database processes, normally on different cluster nodes, with only one copy of any 
fragment on the cluster. Such a scheme does not have strong HA capabilities. To 
achieve high availability of data, replication of database fragments is used to allow 
storage and access of data in more than one node. In a fully replicated database the 
database exists in its entirety in each database process. In a partially replicated database 
the database fragments are distributed to database processes in such a way that copies of 
a fragment, hereafter called replicas, may reside in multiple database processes. 

In data replication, fragments can be classified as being primary replicas (Prima-
ries) or secondary replicas (Secondaries). The primary replicas represent the actual 

                                                           
1  Fragment is a generalization of the common definition of table fragmentation in relational 

databases. 
2 This normally applies to horizontal fragmentation, but it does not exclude vertical 

fragmentation if we consider the replicated primary key to be an identifier of data instead of 
data itself. 



 Architecture of Highly Available Databases 7 

 

data fragment3 and can be read as well as updated. The secondary replicas are at most 
read-only and are more or less up to date with the primary replica. Secondary replicas 
can be promoted to primary replicas during a failover (see section 0). 

4.2   Cardinality Relationships Among Primaries and Secondaries 

1*Primary/1*Secondary 
Here every fragment has exactly one primary replica which is replicated to exactly 
one secondary replica. This is a very common redundancy model since two replicas 
has been found adequate for achieving high-availability in most cases. 

1*Primary/Y*Secondary 
Here every fragment has exactly one primary replica and is replicated to a number of 
secondary replicas. This model provides higher availability than 1*Primary/ 
1*Secondary and allow for higher read accessibility if secondary replicas are allowed 
to be read. 

1*Primary 
Here every fragment exists in exactly one primary replica. This model does not pro-
vide any redundancy at the database level. Redundancy is provided below the data-
base by the underlying storage. It is used in shared disk systems and also in central-
ized or partitioned databases. 

X*Primary 
Here every fragment has a number of primary replicas and is used in N*Active proc-
ess redundancy models (sometimes called multi-master). This model allow for higher 
read and update accessibility than 1*Primary if the same fragment is not attempted to 
be updated in parallel (since this would lead to update conflicts).  

4.3   Relationships Between Databases and Fragments 

Non-partitioned Replicated Database 
The most common case is when the database and the fragment are the same. Conse-
quently, the whole database is replicated to the Secondary location (Fig. 3). NOTE: 
all cases in this subsection are illustrated assuming the 1*Primary/1*Secondary 
cardinality. 

Primary Secondary
Replication Single-fragment

(fully replicated)
Non-partitioned  

Fig. 3. Non-partitioned database 

 
Partitioned Replicated Database 
In this model, there are fragments having the purpose of being allocated to different 
nodes or of being replicated to different nodes (Fig. 4). 
                                                           
3 If a primary replica is not available then the fragment is not available, thus the database is 

not available. 



8 S. Drake et al. 

 

Replication

Primaries Secondaries
 

Fig. 4. Partitioned database 

Mixed Replicated Fragments 
A special case of a partitioned database is a database with mixed partitions whereby a 
database may host both Primaries and Secondaries. A special case is two databases 
with symmetric fragments (Fig. 5). 

Replication
Primary

PrimarySecondary

Secondary

 

Fig. 5. Two databases with symmetric fragments 

5   Process Redundancy Models 

5.1   Active/Standby (2N) 

Active/Standby (sometimes referred to as 2N) is a process redundancy model for HA-
DBMS that is supported by both replication and shared-disk systems. Each active 
database process is backed up by a standby database process on another node. 
In Fig. 6, a replication-based example is shown while Fig. 7 provides a shared-disk 
based example. All updates must occur on the active database process; they will be 
propagated via replication, or via a shared disk, to the standby database process. 

Database Transactions

Node A

DB Process
(Active)

Primary
D

Replication

Node S

DB Process
(Standby)

Secondary
D´

DB Service

 

Fig. 6. Active/Standby Redundancy Model using Replication 



 Architecture of Highly Available Databases 9 

 

Database Transactions

Node A

DB Process
(Active)

Node SS

DB Process
(Standby)

DB Service

Shared
Disk

 

Fig. 7. Active/Standby Redundancy Model using Shared Disk 

In the case of a failure of the active database process (for any reason such as 
software fault in the database server or hardware fault in the hosting node) the 
standby database process will take over and become the new active database process 
(Fig. 8). If the failed database process recovers it will now become the new standby 
database process and the database processes have completely switched roles (Fig. 9). 
If the HA Database has a preferred active database process it can later switch back to 
the original configuration. 

Node A

DB Process

D’

Database Transactions

Node S

DB Process
(Active)

Failure!

DB Service

Primary
D

 

Fig. 8. Failure of Active Primary, Switchover 

The standby database process can be defined as more or less ready to take over  
depending on the chosen safeness level and the HA requirements of the applications. 
To classify the non-active database processes we separate between hot standby and 
warm standby. 



10 S. Drake et al. 

 

Node S

DB Process
(Standby)

Secondary
D´

Replication

Database Transactions

Node A

DB Process
(Active)

Primary
D

DB Service

 
Fig. 9. Reversed Roles 

Hot Standby 

One active database process is being backed up by a standby database process that is 
ready to more or less instantly (in sub-second time) take over in case the active data-
base process fails. The applications can already be connected to the standby or be 
reconnected to the standby (now active).  

Warm Standby 

One active database process is being backed up by a standby database process that is 
ready to take over after some synchronization/reconnect with applications in case the 
active database process fails. In this case, the failover may last from few tens of  
seconds to few minutes. 
    In the next section we introduce spares and we distinguish between standbys and 
spares since it is possible to have a model Active/Standby/Spare. 
    There are many commercial incarnations of active/standby HA database systems. 
In Oracle Data Guard [12] and MySQL replication [11], the active primary database 
ships transactions to one or more standby databases. These standby databases apply 
the transactions to their own copies of the data. Should the primary database fail, one 
of these standby databases can be activated to become the new primary database. 
Oracle Data Guard also supports both synchronous and asynchronous log shipping 
along with use selectable safeness level ranging from 1-safe to very-safe. The Carrier 
Grade Option of the Solid Database Engine [16] also uses an active-standby pair with 
a fully replicated database and dynamically controlled safeness level. 

5.2   Active/S*Spare 

Active/S*Spare (one Active and S Spares) is a configuration in which several spare 
database processes are pre-configured on some node(s). It is supported both by shared 
disk systems and replicating systems. An example of a shared-disk based architecture 
with a spare process is shown below (Fig. 10). 

 



 Architecture of Highly Available Databases 11 

 

Database Transactions

Node A

DB Process
(Active)

Node SS

DB Process
(Spare)

DB Service

Shared
Disk

 

Fig. 10. Active/S*Spare Redundancy Model using Shared Disk 

In a shared-disk database, if the active database process fails, the shared disk 
containing the database files is mounted on the node hosting the Spare (a spare node), 
theSpare becomes initialized with the database, and the database becomes active on 
that node. If the failed node restarts it will now become a new spare node. The nodes 
have therefore completely switched roles. If the HA Database has a preferred active  
database process it can later switch back to the original configuration. 

In a replicating HA-DBMS, the Spare gets the database before becoming Active. 
The level of availability offered by this model is lower that that of Active/Standby 
because of the additional time needed to initialize the Spare.  

This kind of operation represents the model that is supported by commercially 
available clustering frameworks such as Sun Cluster [17] and IBM HACMP [7]. 
These clustering frameworks support all the major DBMSes. 

5.3   N*Active 

In larger clusters, the database system can utilize more than two nodes to better use 
the available processing power, memory, local disks, and other resources of the 
nodes, to balance the load in a best possible way. In the N*Active (sometimes 
referred to as N-Way Active) process redundancy model, N database processes are 
active and applications can run transactions on either process. Here all processes 
support each other in case of a failure and each can more or less instantly take over. 
All committed changes to one database process are available to the others and vice 
versa. In shared-disk systems, all the database processes see the same set of changes. 
In a replication-based system, all changes are replicated to all the processes. 

The database is fully available through all database processes and all records can be 
updated in all processes. In case of simultaneous conflicting updates, copy consistency 
may be endangered, in a replicating system. This is taken care of with a distributed 
concurrency control system (e.g. lock manager) or a copy update reconciliation method. 
In a shared disk system, the database infrastructure may be simpler because the data 



12 S. Drake et al. 

 

objects are not replicated. The database internally implements a lock manager to prevent 
conflicting updates to the same data. Fig.11 shows a shared disk based N*Active model. 
Note that we used 2 nodes as an example even though the model supports more than 2 
nodes. Fig. 12 shows a replication-based 2-node N*Active model. 

There are several commercial implementations of N*Active HA database systems. 
The Oracle Real Application Clusters [13] is an example of an N*Active configura-
tion whereby all the instances of the database service are active against a single logi-
cal copy of the database. This database is typically maintained in a storage-area-net-
work (SAN) attached storage. The HADB of Sun ONE [18][6] uses also the N*Active 
approach that can be applied to the whole database of fragments thereof. MySQL 
Cluster [3][19] has an N*Active configuration in which the processes are partitioned 
into groups. Each operation of a transaction is synchronously replicated and commit-
ted on all processes of a group before the transaction is committed. MySQL Cluster 
provides a 2-safe committed replication if the group size is set to two. 

N*Active configurations have demonstrated scalability with real applications. 
SAP, for example, has certified a series of Oracle Real Application Clusters-based 
SAP SD Parallel Standard Application benchmark that demonstrates near linear scal-
ability from 1 through 4 nodes [15]. In the TPCC benchmark, a 16-node Oracle Real 
Application Clusters demonstrated 118% of the throughput of a single multiprocessor 
that contains the same number of CPUs[20]. 
   If the database is not fully replicated and there are mixed fragments in all databases, 
the process model is always N*Active. For example, in Fig. 13, a 2*Active HA-
DBMS is shown utilizing symmetric replication. With symmetric replication, concur-
rency control problems are avoided and the advantage of load balancing is retained. 

Unlike most N*Active environments, in Fig. 13, the partitioning scheme is visible 
to the application and is often based on partitioning the primary key ranges. The 
applications are responsible for accessing the correct active process. Inter-partition 
transactions are normally not supported. 

 
 

DB Service

Shared
Disk

Database Transactions

Node A1

DB  Process
(Active)

Node AN

DB Process
(Active)

Database Transactions  
 

Fig. 11. N*Active, Shared Disk 



 Architecture of Highly Available Databases 13 

 

Node A1

DB Process

Primary
D

Replication

Database Transactions

Node AN

DB Process

Primary
D

Database Transactions

DB Service

 
Fig. 12. N*Active, Full Replication, Redundancy Model 

Node A1

DB Process
(Active)

Replication

Node AN

DB Process
(Active)

Database Transactions

DB Service

Secondary Primary

SecondaryPrimary

Database Transactions  

Fig. 13. A 2*Active symmetric replication database system 

5.4   N*Active/S*Spare 

N*Active/S*Spare (N times Active and S times Spare) is a variant of Active/S*Spare 
where N Active database processes provide availability to a partitioned database. As 
in the N*Active model, the active processes may rely on a shared disk, may use fully 
replicated databases or mixed fragments (partially replicated databases). 

An example of a partially (symmetrically) replicated database with Spares is 
shown in Fig.14. 
    Each database process maintains some fragments of the database and Spare proc-
esses can take over in case of failure of active database processes. A Spare must get 
the relevant fragments of the active database process at startup.  



14 S. Drake et al. 

 

Database Transactions

Node AN

Process
(Active)

P1’

P2

Node A1

Process
(Active)

P1

P2’

Replication

Node SS

Process
(Spare)

Node S1

Process
(Spare)

DB Service

Database Transactions
 

Fig. 14. N*Active/S*Spare Redundancy Model, Partially Replicated Database 

5.5   Other Redundancy Models 

Some systems combine multiple redundancy models to achieve different degrees of 
data and process redundancy. M-standby, cascading standby and geographically 
replicated N*active clusters [9] are several examples. Since they are composed of the 
other redundancy models presented in this paper, they will not be further discussed. 

6   Application View 

Applications may or may not be aware of the redundancy models used by various 
components of the database system. In Active/Standby configurations, applications 
normally need to be aware so that they can connect to the active instance. Moreover, 
different aspects of the database system may in fact use different redundancy models. 
For example, a database management system may have one set of processes that 
manage data, and another set of processes that execute queries and to which client 
applications connect. These sets of processes may have completely different redun-
dancy models, and may communicate with each other in various ways. 

A related topic is the partitioning scheme. In general, it is better to hide the appli-
cation from the actual partitioning of the data fragments. This allows the application 
to remain unchanged should the partitioning scheme be changed due to planned or 
unplanned reconfigurations. Keeping the partitioning scheme internal to the database 
server allows for internal load balancing and reorganization of data without affecting 
applications. For performance reasons some systems provide some concept of locality 
and support for co-locating applications and data on the same node. This can some-
times be controlled through “hints” from the applications to the database server about 
where data is most effectively stored. Logical partitioning schemes for both applica-
tions and data are often combined with common load balancing schemes built into 
distributed communication stacks. 

Products from Oracle, Sun, and MySQL maintain the process distribution transpar-
ency with various approaches. 



 Architecture of Highly Available Databases 15 

 

7   Summary 

Database management systems are critical components of highly available applica-
tions. To meet this need, many highly available database management systems have 
been developed. This paper describes the architectures that are internally used to 
construct these highly available databases. These architectures are examined from the 
perspective of both process redundancy and logical data redundancy. Process redun-
dancy is always required; it refers to the maintenance of redundant database processes 
that can take over in case of failure. Data redundancy is also required. Data redun-
dancy can be provided at either the physical or the logical level. Although both forms 
of data redundancy can provide high availability, this paper has concentrated on logi-
cal data redundancy since that is a case where the database explicitly manages the 
data copies. We believe that process and data redundancy are useful means to 
describe the availability characteristics of these software systems. 

References 

1. Application Interface Specification, SAI-AIS-A.01.01, April 2003. Service Availability 
Forum, available at www.saforum.org. 

2. Gray, J. and Reuter, A.: Transaction Processing Systems, Concepts and Techniques. Mor-
gan Kaufmann Publishers, 1992. 

3. How MySQL Cluster Supports 99.999% Availability. MySQL Cluster white paper, 
MySQL AB, 2004, available at http://www.mysql.com/cluster/. 

4. Hu, K., Mehrotra, S., Kaplan, S.M.: Failure Handling in an Optimized Two-Safe Approach 
to Maintaining Primary-Backup Systems. Symposium on Reliable Distributed Systems 
1998: 161-167. 

5. Humborstad, R., Sabaratnam, M., Hvasshovd, S-O., Torbjørnsen, Ø.: 1-Safe Algorithms 
for Symmetric Site Configurations. VLDB 1997: 316-325. 

6. Hvasshovd, S., et al.: The ClustRa Telecom Database: High Availability, High Throughput 
and Real-time Response. VLDB 1995, pp. 469-477, September 1995. 

7. Kannan, S. et al.: Configuring Highly Available Clusters Using HACMP 4.5. October 
2002, available at http://www.ibm.com. 

8. Norman, M.G., Zurek, T., Thanisch, P.: Much Ado About Shared-Nothing. SIGMOD 
Record 25(3): 16-21 (1996). 

9. Maximum Availability Architecture (MAA) Overview. Oracle Corporation, 2003, 
available at http://otn.oracle.com/deploy/availability/htdocs/maa.htm. 

10. Mohan, C., Treiber, K., Obermarck, R.: Algorithms for the Management of Remote 
Backup Data Bases for Disaster Recovery. ICDE 1993: 511-518. 

11. MySQL Reference Manual. MySQL AB, 2004, available at 
http://www.mysql.com/documentation/. 

12. Oracle Data Guard Overview. Oracle Corporation, 2003, available at 
http://otn.oracle.com/deploy/availability/htdocs/DROverview.html. 

13. Oracle Real Application Clusters (RAC) Overview, Oracle Corporation, 2003, available at 
http://otn.oracle.com/products/database/clustering/. 

14. Polyzois, C.A., Garcia-Molin, H.: Evaluation of Remote Backup Algorithms for Transac-
tion-Processing Systems. ACM Trans. Database Syst. 19(3): 423-449 (1994). 



16 S. Drake et al. 

 

15. SAP Standard Applications Benchmarks, SD Parallel, June 2002, available at 
http://www.sap.com/benchmark/. 

16. Solid High Availability User Guide, Version 4.1, Solid Information Technology, February 
2004, available at http://www.solidtech.com. 

17. Sun Cluster 3.1 10/03 Concepts Guide, Sun Microsystems, Part No. 817-0519-10, October 
2003. 

18. Sun ONE Application Server 7 Enterprise Edition – Administrator’s Guide, Sun Microsys-
tems, Part no. 817-1881-10, September 2003. 

19. Thalmann, L. and Ronström, M.: High Availability features of MySQL Cluster. MySQL 
Cluster white paper, MySQL AB, 2004, available at http://www.mysql.com/cluster/. 

20. Transaction Processing Performance Council TPC-C Benchmarks, December 2003, avail-
able at: http://www.tpc.org. 

21. Wiesmann, M., Schiper, A.: Beyond 1-Safety and 2-Safety for Replicated Databases: 
Group-Safety. EDBT 2004: 165-182. 

 
 
 



Data Persistence in Telecom Switches

S.G. Arun

Force Computers, Bangalore, India
Arun.sg@fci.com

Abstract. This paper explores the need for data persistence in Telecom
Switching applications, the different kinds of data that need persistence
and the use of databases to achieve this persistence for providing High
Availability. Depending on the complexity, architecture and capacity of
the telecom application, the data persistence also needs suitable archi-
tecture. Some of these applications and corresponding database models
for data persistence in the control plane are described in this paper, with
some performance reviews.

1 Introduction

Today it is a given that any telecom product that is to be commercially deployed
must be carrier grade. A general understanding of carrier grade product is that,
at a minimum, the system must meet the “5 Nines” availability criterion. This
means that a system can be out of service for at most six minutes in a year,
or must be available 99.999% of the time. This includes planned and unplanned
down time. Telcos demand this kind of performance simply because the cost of
down time is high both in terms of lost revenue and the image or the credibility
with the customers, or even regulatory requirements.

In this paper, we start with the concept of High Availability (HA) and how it
leads to data persistence. We see the choices that we have in accomplishing the
data persistence and some standards prevalent in this field. Then we see some
typical telecom architectures and how database can be integrated to meet the
HA needs of each type of architecture. Finally, we see some performance numbers
to see the real world performance of database based persistence models.

1.1 HA and Related Concepts

Closely related to the concept of HA are the concepts of fault coverage and
Reliability. Fault coverage determines how the design of the system takes care of
all expected and possible faults or things that can go wrong. On the other hand,
it is recovering from unknown faults that determine how good the HA criteria
are met.

Reliability is whether the system runs without a fault. For example, a system
might crash for a millisecond every week, so its reliability is not high, whereas
its availability is better than 5 Nines. On the other hand, another system might

M. Malek et al. (Eds.): ISAS 2004, LNCS 3335, pp. 17–32, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



18 S.G. Arun

not crash at all for 6 months and then be down for 2 weeks. Here the reliability
is high, “HA-ness” is low.

Now we are closing in on what is meant by HA. It is the probability that the
system is available at any given sampling time. Reliability is the determinism of
the system. Fault coverage, or the handling of faults is necessary for both, but
not sufficient for HA.

1.2 Aspects of Application HA

Data from IEEE [1] shows that a significant amount of downtime is caused
by software. Contrary to the earlier myth that throwing more hardware at the
system makes it more robust, data shown below shows that this is not the case.
What we end up with more hardware is more cost, not HA. Clearly, the focus
areas need to be on the software and upgrade / maintenance times, that account
for the maximum downtime.

Fig. 1. IEEE data on system Failure

At the application level, the Service Availability Forum (SAF) defines the
state of the application within the context of ITU’s X.731 state management[2].
This defines the application to have states that enable us to determine the ca-
pability to provide service, or capability to take over service in case of failure.

However, when a standby application takes over, there is a need to know
“where” the previously active application stopped (or crashed). This is where
the concept of checkpointing comes in. SAF has standardized this interface too.



Data Persistence in Telecom Switches 19

A typical telecom switch consists of three operational planes, or the con-
text of the application: control, data and management plane. The control plane
executes various signaling and routing functions that result in dynamically con-
figuring the data plane. The data plane transports the user or bearer traffic. The
management plane provides an administrative interface into the overall system,
and is responsible to keep the system healthy and operational.

There are several other aspects of the application level fail over that need
consideration and these are addressed in the SAF as well. Some of them are:
1. Event services framework.
2. Cluster management framework.
3. Messaging framework.
4. Data management framework

The data management framework within the context of a telecom switching
application is the focus of the current paper and is limited to control plane.

2 Data Persistence

2.1 Need for Data Persistence

With the states of the application being monitored and managed by a distributed
mechanism, further discussion assumes that there is a well-defined procedure for
the fail over of the application process. What is needed along with the state
management is to be able to determine the current calls already established by
the failed application, before it stopped or crashed.

From the Telco’s perspective, it is very important to not drop existing calls,
as this is a customer visible fault. If an existing call is dropped, not only is the
customer billed for the call that he is not able to complete, there is also an added
irritation of the need to re-dial. Thus the first and perhaps the most important
criterion for an application is that the existing calls be held, which means that
all information related to the existing calls needs to be persisted. The second and
derived requirement is that the persisted data be available as soon as possible
to the back up process on fail over of the active process.

There have been traditionally three classifications of achieving HA, namely
hotstandby, warm standby and cold standby. Hotstandby is when the back up
is as good as the primary and is already in a form of pseudo-service, except
for a minimal switching needed by the Automatic Protection Switching (APS),
which is typically of the order of few tens of milliseconds. Cold standby is when
the data as well as the application process need to first come up to speed
to the state of the active process, before being capable of providing service.
Warm stand by is when the standby process is already running, but needs some
time to synchronize with the active application. While hotstandby is clearly
the preferred choice, it comes at a cost in that there needs to be a designated
hotstandby for every service or process(or) that needs this kind of fail over
mechanism.



20 S.G. Arun

2.2 What Kind of Data?

In the context of telecom switch, we have seen that there are three operational
planes. Now let us look more closely at the role of each of these planes and the
kind of data that is present in each domain.

The control plane, which is also called the call processing, contains and ma-
nipulates data that typically impacts the service and hence needs persistence.
For example, a media gateway would need to persist the source IP and port
numbers, destination IP address and port numbers, PSTN line number identi-
fiers or Circuit Identifier Code (CICs) and time slot numbers, codec types, bit
rates, some Call reference number, timestamp of start of the call etc. Not having
persistence for call data means that HA cannot be accomplished.

Apart from the call specific states, there is also a need to persist the man-
agement plane data. This includes, for example the number of current alarms
in the system. This is needed for recovery action to take place in spite of a fail
over. Also needed are other data like the audit timers, time based jobs etc. While
this kind of non-call data is not immediately visible to the customer, yet it is
important, because if not handled, they eventually lead to system crashes and
hence unplanned down time. We currently focus on the control plane HA in this
paper.

2.3 How Much Data?

In simple terms, the data persistence requirements are clearly dictated by the
system capacity. One measure of the system is easily the number of ports in
the system and this determines the amount of data that might need persistence.
Another important measure is the throughput, which is the amount of data
that needs to be persisted per second. This performance number represents the
number of times the persisted data needs to be updated, deleted or new data
inserted.

This has bearing on the Busy Hour Call Attempts (BHCA) specified for the
system. Clearly, the same switch installed in a metro network has a different
BHCA specification than if it is installed in a rural or semi-urban network. For
a given system, in a given network, the BHCA is specified as the maximum
number of calls that are attempted on the system in an hour.

To get a feel for some numbers, let us work through a simple example and
start with a network element that is specified at 6000 ports. Assuming that the
average hold time is 120 seconds (other times are ignored in this simple example),
also the offered Erlang is 0.8 per line (which shows an extremely high loading),
then the system is expected to handle

(
6000X60X0.8

3600X2

)
= 40 (1)

40 calls per second. This is then the number of times call related data must be
persisted. If we have some figure like about 150 bytes that need to be persisted
per call, then we have 150X40 = 6000 bytes per second to be persisted.



Data Persistence in Telecom Switches 21

On the other hand, if we are looking at the distributed system, then the call
densities are much higher. A typical switch capacity could be around 60,000
ports. This means that for every second, there are about(

60000X60X0.8
3600X2

)
= 400 (2)

400 calls per second. Now we find that there is a need to persist about 60,000
bytes of data per second.

This kind of call related data need persistence for the duration of the call.
Should there be fail over any time, the persisted data enables the application to
continue without customer visibility, thus ensuring HA. At the end of each call,
the call related data could be deleted from the persistence, unless needed for
other administrative purposes, like backing on tape etc. In any case, the data
deleted from the persistence reserved for HA is not necessary for HA anymore
after the call has terminated. In this paper, the model does not take into account
the backing up procedures nor the load that it may momentarily place on the
processor.

3 Data Persistence Models

Here we see some of the common data persistence models necessary for different
telecom architectures, driven among other factors, by the system capacity. After
a quick look at database as persistence tool and some commonly used terminol-
ogy, we then look at the usage of database in typical telecom architectures.

3.1 Database as Persistence Tool

As one of the primary goals of providing HA is interoperability with multiple
vendors, it is essential that the architecture conform to some standard. In this
case, the relevant standard is the SAF, which defines the HA in terms of the
interfaces, leaving room for individual implementers to provide their own specific
architectures.

See chapter 7 of Service AvailabilityTM Forum Application Interface Specifi-
cation SAI-AIS-A.01.01 [3] for more details about the check pointing interfaces
and requirements. The Service Availability checkpoint service provides an ef-
ficient facility for software processes to record checkpoint data incrementally.
Using the checkpoint service to record checkpoint data protects the applica-
tion against failures. After a fail over procedure, the checkpoint service is used
to retrieve the previous checkpoint data and resume execution from the state
recorded before the failure, minimizing the impact of the failure.

While SAF provides the specifications, it is left to the implementation to
realize the checkpoint services in an efficient manner to meet the needs of the
telecom application.

It is possible to implement the checkpoint services at a purely application
level service, as shown in the figure below. Reference [4] shows such an imple-
mentation.



22 S.G. Arun

Fig. 2. Application level Check Pointing service

AMF = Availability Management Framework, AIS = Application Interface
Specification

In this scenario, the application is responsible for the check pointing and it
has to be built into the design and implementation. Producing and reading check
points, along with sufficient protection, handling multiple clients or consumers
of the data etc has to be managed by the application itself, which is a non-trivial
part of the overall telecom architecture and effort.

On the other hand, using a standard database approach to manage the per-
sistence has the advantages that the check pointing, both locally and over the
network can be transparently taken care of by the database. See the figure be-
low for a typical implementation of the database version of the check pointing
services.

One of the major advantages of using a regular database is the usage of the
concept of “transactions” that preserve the atomicity of each work unit and the

Fig. 3. Check Pointing using Database



Data Persistence in Telecom Switches 23

consequent operations that are possible like rollback, commit on a transaction
that would otherwise be a significant part of the application development.

Before we investigate common telecom switching architectures, let us briefly
summarize some terminology used in the database domain and how they map
into the context of this discussion.

Catalog: A catalog logically partitions a database so that data is organized
in ways that meet business or application requirements. Each logical database is
a catalog and contains a complete, independent group of database objects, such
as tables, indexes, procedures, triggers, etc. In the current scenario, a catalog
can represent an instance of call processing (see later sections) and the call data
required thereon.

Tables: This is a unit of database that can logically exist on its own; in other
words, a table contains all information that is complete by itself. For example,
there can be a table of all connections, called connection table.

Hotstandby: A second database server that is linked to the first and is ready
to take over in case the first fails. The secondary server has an exact copy of all
committed data that is on the primary server.

Replica: The replica database is the storage of local data and saved transac-
tions. All replica data, or a suitable part of it, can be refreshed from the master
database whenever needed by subscribing to one or multiple publications. The
local data includes data of the business applications, typically a subset of the
master database, as well as system tables that contain information specific to
the particular database.

Diskless: The Diskless option allows replicas to run in processors that do not
have hard disks, such as line cards in a network router or switch. A diskless
server is almost always a “replica” server. This gives the highest performance in
terms of the data storage capability.

Transaction: This is an indivisible piece of work, that is either completely
accomplished or not at all. There may be multiple statements within each trans-
action, but unless all of them are completed, a transaction is said to be not
complete.

Transaction Log: This is one of the ways of protecting data. This log tracks
what pieces of the transaction have been completed and incomplete transaction
can be rolled back based on the transaction log, in case the transaction is not
able to complete. There are variants of logging like strict, adaptive and relaxed.
These are relevant to the disk version of the database and refer to the degree of
data safety. In strict version, the transaction data is logged into disk after every
transaction. A database like SOLID’s BoostEngine [5] uses a REDO log to roll
back transactions.

Commit: To commit a transaction is to make the transaction permanent
in the database. A transaction is completed when it is committed. A two-safe
commit ensures that the secondary has the data, even if the primary node were
to go down.

Having familiarized with the commonly used database terminology and how
they apply to the telecom switching domain, let us now look at some of the more



24 S.G. Arun

common telecom switching architectures and how database can help achieve the
data persistence.

3.2 Centralized Control Plane

This architecture is suitable for small and medium sized telecom switching ap-
plications, where the expected call density is not very high. In the centralized
architecture, the central control processor (CP) hosts the call processing that
is connected to the external network element. This in turn drives the traffic
processor (TP) whose role is limited to the carrying traffic data. From a data
perspective, all the data is at the control processor and this then acts a source
for the data that needs to be persisted. Here we see that a single tier of database
is sufficient to meet the requirements of persistence.

In this scenario, the CP as a result of call processing (STEP 1), sets up the
data path and communicates the connection details to the relevant TP (STEP2).
After the TP completes the path set up of the D-plane, it acknowledges back to

Fig. 4. Data Persistence Model for Centralized C-plane



Data Persistence in Telecom Switches 25

the CP about the success of the operation (STEP3). At this point, the details
of the successful call is persisted in the local database and also sent to the
hotstandby for persistence (STEP4). This is when the transaction (or the call
details) is committed. Note that separate catalogues are maintained for each of
the traffic processor and that the TP itself has no call data records and all the
data is available at the control processors. To avoid a single point of failure, it is
recommended that the 2-safe acknowledgement protocol between primary and
secondary with adaptive or relaxed logging be used. Only in cases where there
is a need to avoid catastrophic failures where both the primary and secondary
nodes go down, it is necessary to have strict logging.

As a result of this operation, what we have is that each call that is successful
has the data stored in the CP as well as the stand by CP. This means that
this architecture is capable of supporting a failure of a TP and a CP. In case of
failure of a TP, the persisted data on the CP needs to be provided to another
TP before the TP is capable of continuing. Clearly, hotstandby of the TP is not
possible, and there may be a user visible break in the data path. This may be
acceptable for some data-only applications, but is not acceptable for applications
that involve voice. However, the control path is provided with a higher level of
HA in the sense that the standby processor already has the call data and needs
no further time to start being operational.

3.3 Distributed

a. Primary with Replica. This model is necessary when the call density is
high and the single call control processor or centralized approach cannot handle
the processing load. The solution is to distribute the load across many processors.
In the figure, there may optionally be a load balancer, which is not shown. Note
that in this approach, the distributed processor (DP) is responsible for both the
control plane as well as the data plane.

From a data persistence perspective, we see that in this two-tier model, the
CP has the master database and each DP maintains the call data in its own
replica. For each call transaction (call successfully set up) in DP, call data is
pushed from the replica to the master. The replica allows a commit, subject
to approval from the master, which checks for consistency. In this case, since
each DP owns a catalogue, it is easy to see that there will normally not be
any contention issues. Being in-memory of the DP, performance is enhanced. An
asynchronous store and forward protocol guarantees that the data is backed into
the master database and is completely backed up or not at all, thus ensuring
consistency from the application perspective. Clearly, here we see the advantages
of using a database vis-à-vis an application level check pointing.

In this architecture, the role of the CP is restricted to provide the data persis-
tence along with other management functions like network management, provi-
sioning etc and does not participate in the call processing. The Catalogues in the
figure represent the call data stored as a consequence of completed or stable calls.

In this model, there are a few disadvantages. For example, every transaction
has to be sent to CP from each DP and the load on CP would be quite high.



26 S.G. Arun

Fig. 5. Data Persistence for Distributed C-Plane, Option 1

Another implication is that this model inherently does not support hotstandby
operation. This is because the primary database is centrally stored and any
standby of the DP necessarily has to be initialized with the state of the faulty
DP. So, at best, a warm stand by for the DPs can be achieved.

On the positive side, for a given number of blades in a chassis, this provides
the maximum number of ports possible, as there are no dedicated or designated
DPs in hotstandby and hence all the active DPs can be in a load-sharing mode.
Alternatively, there can be some DPs in a standby pool, one of which can take
over the role of a failed DP, but after getting the state information. Assuming
that the failed DP was handling about 2000 calls, this means getting about 2000
X 150 bytes = 300KB of data over the network from the CP, which can mean a
fail over time of a few seconds to few tens of seconds. Clearly, data path HA is
limited in this architecture to only cold or possibly warm standby, whereas the
control path HA is provided with no calls getting dropped. Based on the appli-
cation (data-only or voice), the limitation on data path can be acceptable or not.



Data Persistence in Telecom Switches 27

Fig. 6. Data Persistence for Distributed C-Plane, Option 2

The local catalogue can be some management catalogue like the alarms that
are currently active, or the timer based jobs that are pending etc. relevant only
to CP.

b. Central Primary, Replica with Hotstandby. This architecture is used
in the case of high-density switches. Here call processing is distributed across the
processors, with the result that there is no single point where the global data
is available. The main difference with the previous architecture is that there is
a designated hotstandby processor for each of the active data processor. This
architecture enables the hotstandby of the data processor allowing data plane
fail over as well as control plane fail over.

Hence the data persistence model is different, because the data is generated
and consumed locally, without recourse to a central database.

In this architecture, the local DP maintains a diskless version of the database
catalogues that contain the call details. This is also backed on designated hot-
standbys for the individual processors. On fail over of the active processor, the
hotstandby has a ready copy of the database to continue the processing from
where the active processor failed and there is no network traffic generated for



28 S.G. Arun

this purpose at the time of fail over. Another advantage is that the load on
control processor would be much reduced as the replicas send data periodically
(could be in the order of seconds or tens of seconds).

The replication policy can be re-configured in the event of a replica not having
a standby. The disadvantages of this architecture are that additional resources
(CPU/memory) for maintaining a secondary replica are needed and since it is
the responsibility of a replica to “sync-up”, CP is at the mercy of the replicas
and may not have control over replication interval. Some databases (for example,
BoostEngine from SOLID Information Technology) do provide the flexibility for
replication intervals.

A catastrophic failure only happens when an active DP and the active CP
fail at the same time. However, the standard expectation for HA in the current
context is limited to a single point of failure, not what is called “double fault”
scenarios. The hotstandby of the CP is also in synchronism with the active CP,
so any individual failure of either the DP or the CP is handled gracefully in this
architecture.

The fact that there is a hotstandby for the DP means that there is a possibility
of providing a data path HA as well. This feature then depends on whether there

Fig. 7. Data persistence for Distributed C-plane, Option 3



Data Persistence in Telecom Switches 29

is support from the lower layers. For example, providing an automatic protection
switch (APS) controlled by the fail over mechanism ensures that when the DP
has switched, the corresponding I/O is also switched.

c. Central Replica, Distributed Masters with Hotstandbys. This is sim-
ilar to the previous architecture in terms of functionality. The major difference
here is that the individual DP has the master database and the CP only has the
replicas of the individual DP. In other words, this is a multi-master configuration.

The motivation for this design is that the “call data” is primarily generated
and consumed by a DP and hence it is appropriate to designate this data as
“master”. Each DP maintains the call data in a master and this has a standby.
For each call transaction in DP, data is pushed from the primary to its secondary.
Periodically, the CP replicas pull data from each DP. Some of the advantages of
this model are that the load on CP would be much reduced as the replicas send
data periodically (could be of the order of minutes) and in general, a replica
initiates the replication (“pull” model) and so the CP can exercise control over
the synchronization interval by having the replicas. The main disadvantage is
that additional resources (CPU/memory) for maintaining a secondary replica.
Some of the central maintenance functions in the CP also persist data (like
currently active alarms) etc need for management functions need to be prevented
from reaching the active DP, as this central data is irrelevant in the DP’s context.
This may need additional replication policy changes.

4 Reference Implementation of Database HA

If a database is used in a system for providing data persistence, it is essential
that the database itself also be HA compatible. While there is no special effort
needed in terms of the data itself, what is required is the state management and
fail over strategies, which is what we discuss in this section. In other words, here
we briefly look at process redundancy of the database itself.

Reference implementation is done on Force Computers’ EndurX TM system
for telecom switching applications. The event agent is an entity that works on
the publish-subscribe model and is responsible for notifications of all events
to registered subscribers. The fault manager is responsible for handling of the
events and in a typical implementation, is a rule based entity, that has a defined
response to each of the event received by it or that is expected to be handled
by it.

The DB monitor is a watchdog processes that heartbeats with the database
and is capable of state management of the database. The DB server could be
for example, a process that has been built with the database library, represents
the database in the figure and is the interface seen by the core call processing
application as well as the management application. The DB monitor heart beats
the database and notifies the event agent of the health of the database. The
event agent and fault management are application processes that operate on the
data provided by the DB monitor.



30 S.G. Arun

Fig. 8. Reference Implementation in EndurX

If the primary or active DB server is detected to be un-healthy by the event
agent, then the fault manager initiates action to fail over the process to the mate.
This involves fail over of information like connected clients, virtual IP etc. Data
is available through one of the persistence models described in earlier sections.

While this is a very simplistic model that is described, it also provides for more
features in terms of actual implementation. There is also a higher level of fail over
provided by the shelf manager that is connected to both the blades through the
IPMI [6] interface and this ensures that the node level HA is possible. Events are es-
calated to shelf manager only in case of the fault manager not being able to handle
the failover. Fault mangers are always in synchronism about the individual roles.

5 Performance

The goal of the performance testing is to be able to verify whether the persistence
model that uses database is able to handle the typical call densities and the



Data Persistence in Telecom Switches 31

persistence demands thereon and also to investigate the relative performances
of the different persistence models.

The test systems are Pentium P3 1.4 GHz systems running Linux. A sample
benchmark program inserts rows in a table (7 columns - 2 integers, 5 characters),
each row being of length 256 bytes. A commit is issued after each insert. ODBC
API was used by client program for database transactions.

In the examples below, there are some tests done on a stand-alone system
with only the persistence model having full access to the CPU. While this is
not an intended usage model in a carrier grade system, it is useful, because it
provides some delineation of performance when the data is persisted over the
network, as well as differences in CPU utilization. With this in view, it is more
fruitful to look at relative numbers, as shown below.

Table 1. Disk

Standalone Hotstandby (same machine)

2.5X tps (Durability – Strict & Adaptive) 1X tps (Durability – Strict)
25X tps (Durability – Relaxed) 4.5X tps (Durability – Adaptive)
(tps = transactions per second) 5.5X tps (Durability – Relaxed)

X = Reference taken for the case where the Hotstandby is on the same
machine and the durability is “strict”

We see that as durability is relaxed, the performance numbers increases, i.e.
we are able to persist more data. In case of relaxed durability, we are able to
persist about 5.5X calls details; but this does not enable recovery from the crash
of both primary and secondary nodes. On the other hand, we see that for strict
durability, we can recover from “double faults”, but then we are able to persist
only about 1X call data.

Table 2. Diskless

Standalone Hotstandby (same machine) HSB (over network)

90X tps 3.8X tps 6X tps

Clearly, the diskless version provides the highest performance, as the data
is only in memory and no disk access is involved. If the hotstandby is another
processor, loss of data is minimized in case of failure of the primary processor.
This is still the centralized call-processing model, so the performance is good for
a centralized server.

6 Conclusion

Using a SAF compliant database is a good and flexible option for providing data
persistence in telecom applications. Apart from freeing application developers



32 S.G. Arun

from the burden of providing persistence, use of database provides an easy means
to tailor the persistence architectures to suit the application requirements in
terms of performance, complexity and architecture. SAF standardized interfaces
facilitate the use of compliant databases from multiple vendors.

Acknowledgements

I’d like to thank Nagaraj Turaiyur, Nitin Nagaich , Pavan Kumar my colleagues
in Force Computers (Bangalore). Henry Su, Anders Karlsson, Kevin Mullenex
and Tommi Vartiainen of SOLID Information Technology provided good review.
Markus Leberecht, my colleague at Munich and Ushasri T.S. at Bangalore de-
serve a special thanks.

References

1. Institue of Electrical and Electronics Engineers, Inc., http://www.ieee.org
2. International Telecommunication Union: X.731 specification. http://www.itu.org
3. Service AvailabilityTM Forum Application Interface Specification SAI-AIS-A.01.01

http://www.saforum.org/specification
4. Service AvailabilityTM Forum: Implementing HA databases within an SA Forum

AIS-compliant Framework – White Paper SAF-AS-WP1-01.01
5. Solid Information Technology Corporation: Boost EngineTM Database product.

http://www.solidtech.com/
6. PCI Industrial Computer Manufacturers group: http://www.picmg.org



M. Malek et al. (Eds.): ISAS 2004, LNCS 3335, pp. 33–47, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Distributed Redundancy or Cluster Solution? 
An Experimental Evaluation of Two Approaches for 

Dependable Mobile Internet Services 

Thibault Renier1, Hans-Peter Schwefel1, Marjan Bozinovski1,
Kim Larsen1, Ramjee Prasad1, and Robert Seidl 2

1 CTIF, Aalborg University, Niels Jernes Vej 12, 
9220 Aalborg Ost, Denmark 

{toubix, hps, marjanb,kll, prasad}@kom.auc.dk 
2 Siemens AG, ICM N PG SP RC TM, St.-Martin-Straße 76, 

D-81541 Munich, Germany 
seidl.robert@siemens.com

Abstract. Third generation mobile networks are offering the user access to 
Internet services. The Session Initiation Protocol (SIP) is being deployed for es-
tablishing, modifying, and terminating those multimedia sessions. Mobile op-
erators put high requirements on their infrastructure, in particular - and in focus 
of this paper - on availability and reliability of call control. One approach to 
minimize the impact of server failures is to implement redundant servers and to 
replicate the state between them in a timely manner. In this paper, we study two 
concepts for such a fault-tolerant architecture in their application to the highly 
relevant use-case of SIP call control. The first approach is implemented as a 
distributed set of servers gathered in a so-called pool, with fail-over functional-
ity assigned to the pool access protocols. The second is a cluster-based solution 
that normally implies that the servers are confined in a local network, but on the 
other hand the latter solution is completely transparent to clients accessing the 
service deployed in the cluster. To evaluate these two approaches, both were 
implemented in an experimental testbed mimicking SIP call control scenarios in 
3rd generation mobile networks. An approach for measurement of various de-
pendability and performance parameters in this experimental setting is devel-
oped and concluded with a set of preliminary results. 

1 Introduction 

Beginning with the deployment of 3rd generation mobile networks, the increased wire-
less access bandwidths open up possibilities for enhanced IP-based services, with one 
prominent class being multimedia services. The standardization bodies have taken this 
development into account and in reaction agreed on signaling and call control infra-
structures for such services. In Universal Mobile Telecommunications Systems 
(UMTS) release 5, the standardization bodies have introduced the so-called IP-based 
Multimedia Subsystem (IMS) [1], which relies on the Session Initiation Protocol (SIP, 
[2]) as an application layer protocol for establishing, modifying and terminating  
multimedia sessions.  



34 T. Renier et al.

The introduction of SIP call control in mobile core networks poses new require-
ments on that protocol, which was originally developed with the mind-set of the 
Internet architecture. These requirements are symptomatic for the process of conver-
gence of fixed and wireless networks. In particular, the desire for high availability and 
reliability of such a call control system requires technical solutions which in turn must 
not lead to degradation of performance (such as e.g. increased call-setup times).  

A widely applied solution for reliable service provisioning is the deployment of 
redundant servers in so-called clusters [3], in which failure detection and fail-overs 
are performed transparently to the entity that accesses the service. More recently, an 
alternative approach has emerged that is designed along the lines of general Internet 
paradigms: distribute the redundancy in the network and move certain failure detec-
tion and fail-over functionalities to standardized networking protocols that provide 
access to that server set. The Reliable Server Pooling (RSerPool) framework [4] is an 
important example of such a standardization effort. Redundancy for IMS-like SIP call 
control is further complicated by the stateful nature of the call control servers; the 
state has to be replicated to provide correct behavior after failing over.  

The contribution of this paper is to describe and conceptually compare the afore-
mentioned two different approaches for redundancy deployment, and map them to the 
scenario of SIP call control in IMS (Section 3). Furthermore, the implementation of 
the two solutions in an experimental test network is described and a framework for 
evaluation and comparison as well as an experimental methodology is developed 
(Sections 4 and 5). Finally, preliminary results for a range of performance and de-
pendability parameters are obtained from the experimental set-up and lead to first 
conclusions about the properties of the two different approaches (Section 6). 

2   Background: Call Control for IP-Based Multimedia Sessions 

In the following, we give a brief introduction to the call control protocol SIP and its 
deployment scenario in third generation mobile networks. 

2.1   The Session Initiation Protocol (SIP) 

SIP was defined by the IETF in RFC3261 [2]. It is an application-layer protocol for 
creating, modifying, and terminating sessions over IP. These sessions can be multi-
media conferences, Internet telephone calls and similar applications consisting of one 
or more media types. SIP is designed in a modular way so that it is independent of the 
type of session established and of the lower-layer transport protocol deployed beneath 
it. A SIP session (also call dialog or call leg) is a series of transactions, initiated and 
terminated respectively by an INVITE and a BYE transaction. There are also other 
transactions types, such as REGISTER, CANCEL, OPTIONS, NOTIFY and 
MESSAGE [2]. A SIP transaction consists of a single request, some potential provi-
sional responses and a final response. Provisional responses within a transaction are 
not mandatory and are only informative messages. A transaction is successfully com-
pleted only when the final response is successfully received, processed and forwarded 
by the proxy server. SIP is based on the client-server model: typically, SIP requests 
are originated at a User Agent Client (UAC), pass through one or more SIP proxy 
servers and arrive at one or more SIP User Agent Servers (UAS), which are in charge 
of responding to the requests.  



 Distributed Redundancy or Cluster Solution? 35 

2.2 Deployment Scenario in 3rd Generation Mobile Networks: 
          IP-Based Multimedia Subsystems (IMS) 

In order to support IP-based multimedia sessions in UMTS, a call control infrastruc-
ture that uses SIP was introduced in Release 5. In the IMS, the SIP signaling is  
performed by entities called Call State Control Functionality (CSCF). The network 
architecture consists of three different SIP CSCF servers [5], [6] plus an additional 
supporting database. An overview of these four entities is given in the following,  
see [7] for more details: 

- HSS (Home Subscriber Server) is an integrated database that consists of a Loca-
tion Server, which stores information on the location of users, and a profile data-
base, which stores service profile information for subscribed users. 

- I-CSCF (Interrogation CSCF) acts as first contact point for other IMS networks 
and has additionally the task of selecting an appropriate S-CSCF.  

- P-CSCF (Proxy CSCF) is the server initially contacted by the SIP devices. All SIP 
requests are sent from the sending device to the P-CSCF. 

- S-CSCF (Serving CSCF) is mainly responsible for managing each user’s profile 
and call states. It performs service control and furthermore provides interfaces to 
application servers. 

Fig. 1. SIP call control servers (CSCFs) in IMS 

Figure 1 shows an example of SIP message paths in the IMS between a UAC and a 
UAS. CSCF servers may need to maintain states. There are three types of CSCF serv-
ers in that respect: stateless server, (transaction) stateful server and call stateful server. 
A stateless server is an entity that does not maintain any state of the ongoing calls or 
transactions when it processes requests. A stateless server simply forwards each re-
quest and every response it receives in both directions. A stateful server, or transac-
tion stateful server, is an entity that maintains the client and server transaction states, 
which are updated after successful processing of a request. A call stateful server  
retains the global state for a session from the initiating INVITE to the terminating 
BYE transactions. The call state is updated after completion of each transaction. 

3 Approaches for Fault-Tolerance in IMS 

When designing the IMS, one of the final goals is to provide highly dependable call 
control, e.g. keep the SIP sessions alive, despite the possible failures of SIP servers 
(and despite possibly occurring network errors). Thus, the SIP-based CSCF servers 
have to provide fault-tolerance. 

UAC P-CSCF UAS P-CSCF 

I-CSCF

S-CSCF



36 T. Renier et al.

3.1 Fault-Tolerant Requirements in the SIP Architecture 

In general, nodes and links are vulnerable to failures of different types: hardware 
component crashes, incorrect behavior of software, performance overload, human 
errors, physical damages of wires, connectors, etc. However, all failures can be classi-
fied into two distinct classes: 

- Node failure: the corresponding node stops providing its service(s), due to a crash 
of a subsystem (hardware or software); 

- Link failure: the corresponding link stops serving as a transmission medium to 
convey messages. 

    By definition, fault-tolerance is the property that after a failure another operational 
component of the system has to take over the functionality of the failed counterpart. 
Therefore, one challenge is to achieve a seamless transition. In the SIP architecture, 
redundancy in the IMS network is essential in order to provide fault-tolerance, and 
implies that these important functionalities are implemented in the network: 

- State-sharing (SS) algorithm: replicates the states of server’s existing sessions to 
its peers. The ultimate goal is to maintain an identical image of all states of inter-
est (call or transaction state) in each server of a state-sharing set of servers. The 
state-sharing functionality naturally requires that the S-CSCF, at least, is stateful 
or call stateful. 

- Dissemination protocol: it is the transfer mechanism of the state-sharing mecha-
nism. It is triggered by a state change (event-driven) and its task is to distribute 
state updates to all peers in a state-sharing pool of servers; 

- Failure-detection (FD) mechanism: a method, based on special criteria, is required 
that determines when a server is failed or unavailable (over-loaded). 

- Fail-over (FO) management: it is activated when a failure is detected. Its task is to 
switch the connection to a new active server within a state-sharing pool according 
to the deployed server selection policy. 

- Server selection policy (SSP): defines the next server candidates in case of a fail-
over. This policy might be a round robin, weighted round robin, backup, persistent 
backup, least used, most used, etc. Note that the SSP in a fault-tolerant system is 
combined with the load-balancing scheme (a server is chosen at the beginning of 
every transaction for load distribution purposes). A list of all servers in the state-
sharing pool is maintained as statically configured or dynamically obtained and 
updated. The first option is simpler to implement but it is hard to maintain the list 
updated in case of dynamic re-configuration of the state-sharing pool 
((de)registration and/or failure of servers). 

3.2 Support of Fault-Tolerance in Native SIP 

There is no state-sharing mechanism defined for the SIP level, and therefore no fail-over 
mechanism either. Nevertheless, SIP includes some basic failure detection features. 
There exist different classes of response to the SIP requests. Classes 1xx and 2xx corre-
spond to normal processing and/or successful completion of the transaction. If the UAC 
receives a response belonging to another class, it means that an error occurred. As a 
consequence, a retransmission of the request can be triggered by the UAC.  



 Distributed Redundancy or Cluster Solution? 37 

Native SIP also supports a timeout mechanism in association with a retransmis-
sion algorithm: if the response to the request is not received by the end of the timeout 
period (e.g. in case of link failure), the UAC retransmits the request to the same 
server. This operation is repeated until completion of the transaction within a timeout 
period or until the UAC drops the transaction after a certain number of failed at-
tempts. The timeout values and number of retransmissions depend on the transport 
protocol and are detailed in [2]. 

The lack of state-sharing and fail-over mechanisms makes stateful SIP servers 
very sensitive to failures. In order to achieve good fault-tolerance levels, specific 
solutions must be added into the system. We describe two different concepts for a 
fault-tolerant system: a distributed system and a cluster-based system. An appropriate 
way to compare them is to focus on how they fulfill the three requirements for fault-
tolerance support: state-sharing, failure detection and fail-over. 

3.3 Distributed Architecture: RSerPool 

The RSerPool concept is very simple and relies on redundancy to be deployed any-
where in an IP network (even in different sub-networks). Hosts that implement the 
same service (called pool elements, PE) form a so-called pool, which is identified by 
a unique pool handle (i.e. a pool identifier). The users of a server pool are referred to 
as pool users (PU). A third party entity, called name server or ENRP server, is in 
charge of monitoring the pool, keeping track of the PEs’ status, and to help the PUs 
know which PEs the requests can be sent to. The RSerPool architecture is presented in 
Figure 2. 

Fig. 2. The RSerPool architecture [18] 

The functionality of RSerPool is based on two novel protocols: Endpoint Name 
Resolution Protocol (ENRP) [8] and Aggregate Server Access Protocol (ASAP) [9]. 
ASAP has replaced DNS in RSerPool since it is the protocol that provides the transla-
tion, called name resolution, of a pool handle sent by a PU into a set of transport ad-



38 T. Renier et al.

dresses (IP addresses and port numbers) and adds a suggestion for a server selection 
policy. The information obtained from the NS can be kept in a cache that the PU can 
use for sending future requests. The second RSerPool protocol is ENRP. Name serv-
ers use this protocol mainly to disseminate the status of their PEs among their peers to 
make sure that the information is consistent and up-to-date in every pool (a PE can 
belong to more than one pool).  

The requirements for high availability and scalability defined in RSerPool do not 
imply requirements on shared state. ASAP may provide hooks to assist an application 
in building a mechanism to share state (e.g. a so-called cookie mechanism), but ASAP 
in itself will not share any state between pool elements.  
    SCTP [10] is selected to be an underlying transport layer protocol for RSerPool. It 
makes use of its multi-homing capability to provide network fail-over. SCTP can 
detect node un-reachability with inherent failure detection mechanisms (retransmis-
sion timer and heartbeat auditing). When it detects a failure of the primary path, it 
switches the future communication over the next available active path between the 
two end-points (changing the network interfaces, which are connected to different 
networks when possible). 

While delivering a message, ASAP (at the client side) always monitors the reach-
ability of the selected PE. If it is found unreachable, before notifying the sender of the 
failure, ASAP can automatically select another PE in that pool and attempt to deliver 
the message to that PE. In other words, ASAP is capable of transparent fail-over 
amongst application instances in a server pool. When detecting a failure, an ASAP 
endpoint reports the unavailability of the specified PE to its home NS.  

A name server may also choose to "audit" a PE periodically. It does this by send-
ing healthcheck messages to this PE at the ASAP layer. While the SCTP-layer heart-
beat monitors the end-to-end connectivity between the two SCTP stacks, the ASAP 
healthcheck monitors the end-to-end liveliness of the ASAP layer above it. 

When a PE failure occurs, the PU initiates a fail-over by requesting another name 
translation at the NS, to get an up-to-date suggestion for an active PE, or by using the 
server status information in the cache and try another server in the list returned by the 
NS during the previous name resolution. Using the cache, the fail-over can be done as 
soon as the failure is detected, but with some probability that an unavailable server is 
selected; a repeated name resolution on the other hand slows down the fail-over, but 
increases the chance to fail-over to an active server. 

3.4 Cluster-Based Architecture: RTP 

In telecommunications environments, the clustering concept has been widely ex-
ploited [11], [12]. Redundancy is deployed via a cluster of nodes, physically collo-
cated in the same sub-network. A single virtual IP address is advertised, so the users 
of the service are not aware of the cluster internal architecture. The latter property is 
also referred to as “single system image”. A failure is detected by a built-in failure-
detection mechanism, and a server-initiated fail-over is implemented. 

The specific cluster solution that is used in the experimental set-up for this paper 
is the Resilient Telco Platform (RTP) [13]. It consists of several autonomous nodes 
that are linked together via a cluster interconnect. In addition to the operating system, 
cluster packages link the individual nodes into a cluster. They support the cluster 
interconnects and offer applications well-defined interfaces that are required for clus-



 Distributed Redundancy or Cluster Solution? 39 

ter operations, like e.g. inter-node communication. The inter-node communication 
supports redundant connections for availability reasons and a proprietary low over-
head protocol, so-called ICF (Inter-node Communication Facility), which assures 
reliable and ordered packets delivery. An important characteristic of RTP is the level 
at which redundancy is implemented. Every process (RTP processes and the SIP ap-
plication on top) is replicated among the nodes and, in case of failure, only the faulty 
process is failed over instead of the complete node. Therefore, all other processes are 
still redundant, even after one of them has been failed over. 

We describe the three RTP components that are of most interest in our framework. 
Other RTP components were provided with the software but were not used exten-
sively, for details see [13]. 

Node Manager: One of the primary objectives of RTP is to provide the application 
programmer with a single system image. The node-local components that contribute 
to the cluster-global process management (process startup, monitoring, restart or 
shutdown) are the node managers. Since they need to have a common view on all 
active RTP processes, node managers in a cluster compile their local RTP process 
information (process address and status) into a global process table. Any change in 
the local process configuration is immediately distributed to all other node managers 
in the cluster. The validity of the global process table is periodically verified, and 
consistency problems are resolved. The advantage over RSerPool is that heart-beating 
messages are not necessary anymore, only status updates (equivalent to ENRP mes-
sages) are needed: traffic due to the failure detection mechanism is reduced to a great 
extent. A direct consequence of the single image system is the isolation of the fail-
over mechanism from the component that triggers the retransmission of a request. 
Therefore, it might happen that SIP detects a failure before the node manager. In that 
case the retransmission happens before the fail-over and is inefficient. The responsi-
bilities of a node manager exceed the pure node-local process management and the 
contribution to a cluster-global process management. A node manager provides the 
communication resources for local RTP processes, informs observer processes, etc.  

Context Manager: A context is a data storage accessible from anywhere in the clus-
ter.  In the example of an IMS SIP proxy, we use contexts in order to keep the call 
state available to any SIP instance that would need it, e.g., after a fail-over. For per-
formance reasons, the concept of mirroring (replication) context data on another clus-
ter node has been chosen, instead of using a common database: one CSCF node holds 
the master copy of the context while the other node saves the backup copy. To 
achieve good performance, it is recommended that any operation on a context always 
takes place on the node where the master copy is located. Accessing a context from 
any other node will result in a remote access to the master instance and will therefore 
impact the performance because of the inter-node communication that it requires. If 
the master context manager is no longer available (process or node failure), the 
backup context manager takes over its responsibility. When it is available again, the 
master context manager synchronizes its context data with the backup context man-
ager and then resumes its old role. Even though this approach can induce latency in 
case the application is not located where the master context manager is running, 
inconsistency is completely avoided as the state is consistently read where it was 
written, there is no risk to access obsolete state information. 



40 T. Renier et al.

UDP Dispatcher: Its task is to act as a mediator between the RTP internal message 
system and systems outside of RTP, using UDP. The UDP dispatcher accepts (and 
sends) UDP datagrams on specified ports, analyzes these messages, and distributes 
them to RTP client applications according to algorithms implemented in the so-called 
RTP UDP plugin library attached to it.
    One should be careful about failures in the external link because none of the RTP 
components can detect those failures; RTP processes only monitor the operations 
within the cluster. Therefore, the cluster approach may present a single point of fail-
ure, if there is only one “entrance” to the sub-network in which the cluster is imple-
mented (but this is outside the scope of the current cluster solution). The solution is 
either to implement a ping functionality that would detect this type of failure or to use 

Table 1. Summary of the main functionalities of an RSerPool-based approach as opposed to a 
cluster solution (RTP)

 RSerPool RTP 
Main 

features 
- Distributed redundancy with 

additional node for manage-
ment of the pool.  

- Name resolution needed prior 
communication 

- Cluster architecture in the same 
 sub-network.  

- Internal architecture completely hidden 
to the client: one system image. 

- One virtual IP address advertised. 
State-

sharing 
- Not defined in RSerPool  
- Done at the application layer 

- Context-based (master process accessed 
by default) 

- No inconsistency but latency in some 
cases

Failure 
detection 

- SCTP: link (timer &  
heartbeats) 

- ASAP: application (timer & 
heartbeats) 

- Node manager: process 
(timer & health-check) 

- Cluster software: node 

Fail-over - ASAP, 2 modes: 
Static (cache)  
Dynamic (name resolution) 

- Node manager (dynamic, on process 
level) 

two external links like it is done for the cluster interconnect, or in the RSerPool case 
when the SCTP multi-homing functionality is used. In other words, the current  
implementation of RTP is more sensitive to link failures than RSerPool. 

Table 1 conceptually compares the two solutions by giving the main characteris-
tics and fault-tolerance mechanisms designed. 

4 Experimental Environment 

4.1 Description of the Testbed 

We want to investigate the call control part of the IMS in an experimental set-up 
whose architecture is shown in Figure 3: both user agents, client and server, are co-
located in one machine. The second machine embeds the P- and I-CSCF servers. This 
is quite natural since both servers work together to redirect the requests from the UAC 



 Distributed Redundancy or Cluster Solution? 41 

to an S-CSCF in the core network, which processes and forwards them via the server-
side P-CSCF to the UAS. On the way “back”, the responses use the same path, as 
collected in the via field of the request. As the main service-control functionality is 
integrated in the S-CSCF, the fault-tolerant architectures are applied to this compo-
nent, i.e. it is replicated in PC3 and PC4.  

Fig. 3. Testbed physical and logical topology running the IMS/RSerPool system 

RSerPool Topology: The gray shaded part in Figure 3 represents the logical  
RSerPool system. The redundant S-CSCFs form a server pool. The choice for the 
Pool User was motivated by the architecture of the IMS itself. The role of the PU is 
then taken by the P-CSCF, and possibly also the I-CSCF. However, since the I-CSCF 
is only in the SIP path for Register requests and those are not part of the investigated 
call scenario (see Sect. 4.2), the I-CSCF is not implemented as PU. The PU (P-CSCF) 
and PE (S-CSCF) use SCTP for name resolution and name registration/deregistration, 
respectively. The data exchange is done via UDP at each entity in the testbed.

RTP Topology: The physical topology is the same as in the case of RSerPool (Figure 
3) but the fault-tolerance functionalities are in the cluster only, which is made up by 
the two S-CSCFs. The other entities know one IP address for the cluster, the virtual IP 
address, and they do not know or see which S-CSCF node processes the next SIP 
message. The RTP platform dispatches the message to the appropriate server that is 
chosen based on the SSP, which has been set in the node manager. 

4.2   Traffic and Failure Models 

There are possibly multiple UACs running at PC1; all initiate and terminate calls, not 
necessarily synchronously, which leads to parallel sessions (interesting for scalability 
evaluation). The number of simultaneous sessions equals the number of UACs in PC1 
and is denoted by M. The UACs follow the same call/transaction generation pattern. 
Between the INVITE and BYE transactions, each UAC generates instant message 
transactions (denoted IM) with the MESSAGE request. Within one evaluation run, 
each UAC generates a number of sequential sessions, denoted by N.

The server selection policy is persistent backup. This means that all the transac-
tions in a session are sent to the same S-CSCF until a failure is detected at this server. 

UAC 

UAS 

P-CSCF 
(PU)

I-CSCF

S-CSCF
(PE1)

S-CSCF
(PE2)

PC1

PC3

PC4

PC2

Name 
Server 



42 T. Renier et al.

Then, there is a fail-over to an alternative server, which becomes the new server by 
default for all the next transactions until this server fails, and so on. 

In the RSerPool configuration, a UDP-based state-sharing protocol is deployed as 
described in [14]. Because of some SCTP software limitations, we preferred not to 
make use of the SCTP features for failure detection and link fail-over management 
(link failures are seen as being part of the node or application failures in that case, and 
are detected at the application layer). The failure-detection mechanism per SIP re-
quest is implemented in the P-CSCF. It is defined by the timeout value T1. After the 
SIP timeout expires, the P-CSCF retransmits the request to the other S-CSCF. We 
simulate the cache functionality defined in RSerPool: after the first name resolution 
requested at the name server, the P-CSCF keeps the list of servers returned (described 
by their transport address). When a fail-over occurs, there is no need for another name 
resolution request and the P-CSCF uses the other transport address obtained. 

In the RTP system, the state-sharing and access to the context is done according to 
the ‘standard’ RTP configuration: the primary context manager is contacted first. The 
dissemination protocol for state sharing in the RTP-based system is the proprietary 
low overhead protocol, so-called ICF (Internode Communication Facility), which 
assures reliable and ordered packets delivery. When a node manager detects a failure, 
it automatically fails over to the redundant SIP instance in the cluster. 

To simulate failure and repair processes, an artificial ON/OFF random process is 
established in each S-CSCF. Samples for the random variables time-to-failure (TTF) 
and time-to-repair (TTR) are generated in each S-CSCF and these random variables 
describe an ON/OFF process, enforcing a server to go up or down. TTF and TTR are 
generated from exponential distributions, with mean values MTTF and MTTR, re-
spectively. In practical systems, it normally holds that MTTR/MTTF<<1. 

4.3   Input Parameters 

For the call scenario definition, we need the following random variables: 

- Within each call, the time interval between the reception of a response of one 
transaction and the time instance of sending the request for the subsequent transac-
tion is called inter-transaction time. It is set to an exponential distribution with 
mean value 1/λ (exponential distributions are chosen in order to simplify analytic 
modeling of the system; however this is not in the scope of this paper). 

- The number of IM requests generated within a call is a random number. It is also 
determined by exponential distribution, with the mean value K.

- The call duration is exponentially distributed with mean value 1/μ.

Although there is a possibility to use a link emulator to create artificial delays/losses, 
the experiments in this paper use the ideal setting in the emulator, infinite bandwidth 
B, and no delay (D) or packet loss (P), so that the link characteristics are purely de-
termined by the physical 10Mb/s Ethernet links. 

Table 2 lists all the input parameters and gives their values for each system. 



 Distributed Redundancy or Cluster Solution? 43 

Table 2. Input parameters in the testbed 

RSerPool RTP 
M 2 
N 1000 

1/μ 120 sec. 

1/λ
K

2 sec. 
10

MTTF 190 sec. 

MTTR 10 sec. 

dissemination protocol UDP ICF 

T1
1 sec.  

number of 
retransmissions 

1 (to the other 
S-CSCF)

1 (to the same virtual 
IP address) 

B, D, P 
SSP 

∞, 0, 0 
persistent backup 

4.4   Output Parameters and Metrics 

When evaluating a fault-tolerant system, two sets of metrics are very significant and 
often in a trade-off relationship with each other: service dependability and perform-
ance. The first one directly gauges the benefit from the added redundancy while the 
second indicates e.g. whether the solution is suitable for services with hard or soft 
real-time requirements. 

The service dependability metric set comprises the following metrics: 

-
∧
A : session availability (INVITE transaction) 

-
∧
D : IM service dependability (for non-INVITE and non-BYE transactions) 

-
∧
R : session reliability (BYE transaction) 

The session availability is the probability that a session can be initiated when a UAC 
sends an INVITE request to the UAS. The IM service dependability measures the 
fault-tolerance level of the service provided to the user once the session has been 
initiated. The probability that a session is successful from its initiation to its termina-
tion is determined by the session reliability. Each of these metrics is measured as the 
ratio between the number of successful transactions of one type and the total number 
of requests for the type of transaction.  

Note that the total number of BYE requests is equal to the total number of suc-
cessful INVITE transactions. Indeed, a UAC can request a BYE transaction only if a 
session has been initiated. Note however that in the current setting, the IM transac-
tions are always sent, even in case of an unsuccessful INVITE at session start.

The performance metric set consists of the metrics that give the transaction control 
time for each type of transaction. We distinguish between INVITE transaction time, 
IM transaction time and BYE transaction time. They are defined as the average  
duration of the interval between the moment of sending the request and the moment 



44 T. Renier et al.

of receiving a final response to the request at a UAC for their respective type of trans-
action. Cases when retransmissions occur are considered, but only for successful 
transactions. Note that the fail-over time is not explicitly measured because it is 
hidden in transaction control time. In fact, for a given system and scenario, the  
fail-over time influences the difference between the transaction control time in the 
fault-tolerant system and the transaction control time in the non-fault-tolerant system. 
    As for the dependability metrics, the transaction control times are measured at 
every user agent client. 

Other metrics such as inconsistency, total call control time, and scalability (e.g. as 
measured by the increase of transaction times for increasing number of parallel  
sessions) are very relevant for evaluation purpose but beyond the scope of this paper. 

5   Evaluation Approach and Preliminary Results 

5.1 Evaluation Method 

When evaluating a fault-tolerant system, in order to obtain significant and fair results, 
the system should only be subject to the artificial failures as described in Section 4.2. 
However, in reality, it is practically impossible to run long evaluation scenarios in a 
prototype without experiencing uncontrollable failures (not artificially introduced by 
the ON/OFF model). In order to check for the nature of the latter, we first ran the SIP 
software without fault-tolerant solution and with only one S-CSCF in the testbed. 
Furthermore, in this setting all the CSCFs were co-located in the same physical ma-
chine for simplicity. We observed that failures occurred at any CSCF, too frequently 
at the scale of an evaluation run to be negligible. The system could never recover 
from those uncontrollable failures so we chose to periodically restart the system. Each 
evaluation run was split into blocks of a fixed number of transactions. The desired 
outcome of implementing such a procedure is to minimize the probability of the un-
controllable failures and to allow for recovery. Concretely, a restart script was imple-
mented at PC1. One UAC, called controlling UAC, is in charge of counting the num-
ber of transactions processed. When the counter reaches a certain value (100 in our 
setting), this UAC waits for the end of the ongoing session it is participating in before 
it triggers the restart script. This program shuts down all the SIP components in the 
system (UAs and CSCFs). The components are then started up and the UAs regis-
tered. When both UACs are registered, the traffic model explained in Section 4.2 is 
applied again during the next block. The artificial failure model in the S-CSCFs is 
restarted in the same state (ON or OFF) as it was in before, so that due to the mem-
oryless property of the exponential distribution, it is not affected by the restarting. 

It appears that the uncontrollable failures did not completely disappear: for a 
block-size of 100 transactions, approximately 95% of the blocks could be successfully 
finished. If an uncontrollable failure occurred, it did not show any particularly pro-
nounced dependencies on the number of sessions. 

5.2   Preliminary Results 

The output metrics explained in Section 4.4 were measured in three environments 
(Table 3):  



 Distributed Redundancy or Cluster Solution? 45 

Table 3. First set of results 

SIP (co-located 
CSCFs) 

SIP +  
RSerPool 

SIP +  
RTP

A [%] 

Dim [%] 

R [%] 

Tinv [s] 
Tim [s] 
Tbye [s]

91.278  
(0.3971)
90.538 

(0.4696) 
99.06

(0.0044) 
0.12
0.04
0.04

97.32
(0.031) 
97.24

(0.0406) 
99.69

(0.0011) 
0.12
0.08
0.08

95.84
(0.0381) 

95.56
(0.0319) 

99.21
(0.0023) 

0.10
0.06
0.06

- Original SIP, with one S-CSCF node only; also P-CSCF and I-CSCF are co-
located in the same machine as the S-CSCF. 

- SIP in the distributed architecture (RSerPool, Sect 3.3). 
- SIP in the cluster solution (RTP, Sect. 3.4). 

Both fault-tolerant architectures are implemented with two S-CSCF nodes. The num-
bers in the parentheses indicate 95% confidence interval obtained from repeated 
evaluation runs. The observations from Table 3 are the following: 

- The fault-tolerant solutions increase availability, dependability, and reliability, as 
expected, RSerPool showing slightly better results than RTP though.  

- The confidence intervals also show a steadier behavior of the system with  
RSerPool and RTP as compared to the original SIP version. 

- Transaction times for the IM transactions and the BYE transactions increase in the 
fault tolerant solutions. Thereby, in this special evaluation scenario, the cluster-
based approach (RTP) was 15-25% faster than the RSerPool-based solution.  

However, be careful to avoid generalizing too much from this single setting. The 
implementations was optimized for performance and statistics functions for the 
measurements can potentially put higher load on the processors and I/O systems. In 
particular, some implementation internal threads had to be duplicated for implementa-
tion purposes, which cause higher load and task switching times. Also, for the  
RSerPool-based implementation, additional file handling was added in the S-CSCF 
for evaluation purpose, which increases the processing time. In a performance  
optimized implementation this can be avoided.  

Furthermore, we can observe that in all solutions, the reliability level (successful 
BYE rate) is higher than the two others. It is due to the evaluation method: when an 
INVITE is failed, the IM transactions are sent anyway and their dependability 
counted, which is not the case for the BYE. As we explained above, the system  
cannot recover a failure before the next restart so when the INVITE is failed, all the 
next IMs are as well (availability and dependability drop) while reliability is not  
affected because no BYE is sent. 
    Because of the uncontrollable failures, it is not possible to draw any conclusion 
concerning the absolute values of A, D, and R in the first test in Table 3. Neverthe-
less, looking at the uncontrollable failures and the ON/OFF model as two independent 



46 T. Renier et al.

processes, one could measure the level of uncontrollable failures and derive formulas 
to obtain absolute values for each metric, as in the case of controlled probability of 
failure and known distribution. If the two processes are independent the fault-tolerant 
system could be seen like in Figure 5. 

Fig. 5. Availability graph for the IMS fault-tolerant system splitting the system virtually in two 
parts, A2 determined by uncontrollable failure, while A1 is controlled from the artificial 
ON/OFF model 

In Figure 5, A1 represents the availability that we would get if only the ON/OFF 
failure model were running. A2 is the availability when the uncontrollable failures 
only happen. As we assume that A1 and A2 are independent, we can derive the simple 
formula for calculating the overall availability: 

Atotal=A1*A2 . (1) 

In our testbed we know Atotal, which is the availability measured when uncontrollable 
and ON/OFF failures impact the SIP transactions. The next step for us will be to run a 
new series of tests without the ON/OFF model so that we get A2. Then, the calcula-
tion of A1 (the value we are looking for) is straightforward: 

A1 = Atotal / A2 . (2) 

6   Conclusion 

In the process of converging wired and wireless networks, IP protocols now face 
requirements that were traditionally posed on Telco products. In particular, technical 
solutions for highly reliable IP-based service provisioning are required. This paper 
describes two different approaches –a distributed server pool with standardized pool 
access protocols (RSerPool) and a cluster-based approach– and maps them to an IMS-
like SIP call control infrastructure. The differences between the two approaches with 
respect to the main components of a fault-tolerant system (failure detection, fail-over, 
and state-sharing) are discussed conceptually and an experimental implementation is 
described. Evaluation scenarios, output parameters, and an evaluation approach are 
developed that allow to experimentally investigate various performance and reliability 
parameters of the two solutions implemented. Preliminary evaluation results show 
that unavoidable, inherent SW and HW instabilities complicate a sound experimental 
analysis and directions are pointed out to deal with such issues. Regardless of the 
methodological difficulties, the preliminary evaluations show the feasibility of both 
approaches and allow to obtain first insights into their behavior. 

A1 A2 100% Atotal



 Distributed Redundancy or Cluster Solution? 47 

Acknowledgements 

The authors would like to thank Siemens Mobile Networks, Germany, for supporting 
this research. Furthermore, we are grateful to Fujitsu-Siemens Computers (FSC) for 
providing the Linux based RTP implementation and for technical support for the RTP 
implementation.  With respect to the latter we want to specially thank Dr. Manfred 
Reitenspiess and Anton Spirk, both FSC. Finally, we appreciated the support of  
Siemens PSE, in particular Jiri Prokes, for supplying the SIP007++ stack. 

References 

[1] 3GPP TS 23.228: “IP Multimedia (IM) Subsystem - Stage 2”, Technical Specification, 
June 2001. 

[2] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. 
Handley, E. Schooler, “SIP: Session Initiation Protocol”, RFC 3261, Internet Engineering 
Task Force, June 2002. 

[3] A. Helal, A. Heddaya, B. Bhargava, Replication Techniques in Distributed Systems.
Kluwer Academic Publishers, 1996. 

[4] M. Tuexen, Q. Xie, R. Stewart, M. shore, J. Loughney, “Architecture for Reliable Server 
Pooling”, <draft-ietf-rserpool-arch-07.txt>, October 2003. 

[5] B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema, D. Gurle: “Session Initiation  
Protocol Extension for Instant Messaging”, <draft-ietf-sip-message-07>, September 2002. 

[6] P. Kim and W. Boehm, “Support of Real-Time Applications in Future Mobile Networks: the 
IMS Approach”, Sixteenth Wireless Personal Multimedia Communications, October 2003. 

[7] Siemens. 2001. Architectural Design Specifications, Version 1.1, Project SIP007+. 
[8] Q. Xie, R. R. Stewart “Endpoint Name Resolution Protocol”, draft-ietf-rserpool-enrp-

01.txt, November 2001. 
[9] R. R. Stewart, Q. Xie: “Aggregate Server Access Protocol (ASAP)”, <draft-ietf-rserpool-

asap-01.txt>, November 2001. 
[10] R. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina,  

M. Kalla, L. Zhang, V. Paxson., “Stream Control Transmission Protocol”, RFC 2960, Oc-
tober 2000. 

[11] Vogels W., “The Design and Architecture of the Microsoft Cluster Service”, in Proc. 
FTCS-28, 1998, pp.422-431. 

[12] C. Yang, M. Luo, “Realizing Fault Resilience in Web-Server Cluster” SuperComputing 
and Networking 2000, November 2000. 

[13] Resilient Telco Platform, V2.0 for Linux and Solaris, “RTP Overview and Programmer's 
Guide”, Fujitsu Siemens Computers 2002.   

[14] M. Bozinovski, L. Gavrilovska and R. Prasad, "Fault-tolerant SIP-based Call Control 
System", IEE Electronics Letters, Volume 39, Number 2, pp. 254-256, January 23, 2003. 

[15] P. Conrad, A. Jungmaier, C. Ross, W.-C. Sim, M. Tüxen:“Reliable IP Telephony Applica-
tions with SIP using RSerPool”, from the Proceedings of the SCI 2002, Volume X,  
Mobile/Wireless Computing and Communication Systems II; Orlando, USA; July 2002, 
pp. 352-356 

[16] Haifeng Yu and Amin Vahdat, “Building Replicated Internet Services Using TACT: A 
Toolkit for Tunable Availability and Consistency Tradeoffs”, Second International Work-
shop on Advanced Issues of E-Commerce and Web-based Information Systems, June 2000. 

[17] Kin K. Leung, “An Update Algorithm for Replicated Signaling Databases in Wireless and 
Advanced Intelligent Networks”, IEEE Transactions on Computers 46 (3): 362-367 
(1997). 

[18] http://tdrwww.exp-math.uni-essen.de/dreibholz/rserpool/rsp2.png 



 

M. Malek et al. (Eds.): ISAS 2004, LNCS 3335, pp. 48–60, 2005.  
© Springer-Verlag Berlin Heidelberg 2005 

OpenHPI: An Open Source Reference Implementation of 
the SA Forum Hardware Platform Interface 

Sean Dague 

International Business Machines, 
2455 South Road P096, 

Poughkeepsie, NY 12601 
sldague@us.ibm.com 

Abstract. OpenHPI is production ready reference implementation of the SA 
Forum HPI specification.  It is designed to be easy to setup and use, as well as 
utilize and compliment existing hardware management standards.  OpenHPI is 
available as open source so it can be easily productized by anyone requiring an 
HPI implementation for their hardware. 

1   Refresher on HPI 

Over the past decade, server hardware has evolved at an astonishing rate. One of the 
main areas of on enhancement has been the commoditization of management adap- 
ters. These adapters provide highly detailed monitoring and control of hardware 
devices, often through an out of band mechanism that works even without a 
functional Operating System.  Such an explosive growth is generally accompanied by 
many competing solutions to the problem, which is exactly what has happened in this 
space. This has put a burden on application developers, generally systems manage-
ment or high availability, that wish to take advantage of these capabilities, as they 
must develop to many different competing hardware technologies. 

HPI, the Hardware Platform Interface, was designed to address this issue. It was 
first published by the Service Availability Forum in October of 2002, and defines a 
standard interface for Platform Management. This interface includes modeling of 
hardware as abstract resources, and adds capabilities to those resources as appropriate. 
These resources can then be controlled and monitored by applications linking to an 
HPI library. This provides a single, programmatic interface for application developers 
that desire access to hardware. 

HPI has a legacy in Intel's IPMI (Intelligent Platform Management Interface) 
specification, so those familiar with IPMI will recognize many concepts in HPI. 
However, HPI is sufficiently abstract that an HPI implementation can interface well 
with non IPMI hardware. Those interested in HPI should consult that specification as 
the final definitive source. 

2   Introduction to OpenHPI 

The OpenHPI project was started in January of 2003 with its project registration on 
the SourceForge.Net website.  The idea behind OpenHPI was spawned from the 



OpenHPI: An Open Source Reference  Implementation 49 

 

Carrier Grade Linux meetings in NYC at Linux World Expo that year.  The major 
development push on OpenHPI started at the end of August 2003, after many of the 
OpenHPI members were able to meet face to face at the Ottawa Linux Symposium. 

It is often said, “Standards are great, that's why we have so many of them.” A 
specification only becomes a standard when it achieves a critical mass of adopters and 
users. Up until that point the specification is in danger of being co opted by 
competing efforts that offer equivalent functionality. The OpenHPI project is 
designed to build an ecosystem of developers and users around HPI to help take HPI 
from a specification to a standard.’ 

In order to do this effectively OpenHPI aims to be widely applicable, in every 
sense of the word.  It must be usable on a variety of hardware platforms, from single 
systems to large heterogeneous multi-vendor clusters.  It must be configurable to 
many different customer environments, with very little effort.  It must show that 
although HPI was formed out of the needs of the Telecommunications sector, it is also 
widely applicable and usable beyond it.  And lastly, to take hold in the Linux market 
place, it must be open source software. 

This last requirement comes from a number of areas.  The first is to make it easy to 
create a developer community around HPI.  By providing a reference implementation 
of HPI in Open Source under a business friendly license, developers can take 
OpenHPI in its entirety and modify it.  Or they can contribute the software component 
which enables the hardware they need.  Some organizations have joined the OpenHPI 
effort to do just this, and more are looking to do so in the future. 

The second, and possibly most important, is that it allows the distribution of the 
code base far and wide.  Linux Distributions are free, and encouraged to make 
OpenHPI part of their base software package.  Being under an acceptable license is 
only the first mountain one must climb to gain wide scale acceptance in the Linux 
community.  The software must also be written to certain community standards for 
development, and solve problems in a “Linux like” way.  It must prove its design is 
sound through rigorous peer review, and incorporate new features, and find and 
eliminate software bugs, in a timely manner.  All of these challenges are the same as 
faced by any software project, however the Open Source nature means there is a 
wider audience watching every stage of development, and a much large potential 
developer pool that may contribute to the software. 

The purpose of this paper will be to discuss how these forces have helped evolve 
the OpenHPI project, design decisions made in providing an open and freely available 
HPI implementation, and show the progress and current state of OpenHPI.  It is hoped 
that this will introduce many to the OpenHPI development process, and encourage 
interested parties to experiment with OpenHPI for their platform management needs. 

3   Design Goals 

When starting any software project, design goals must be set.  These goals influence 
all decisions of the development process, and help decide what kind of 
implementation is appropriate.  There are any number of approaches that could be 
taken to fulfill the HPI API.  The following shows how these design goals shaped the 
architecture for OpenHPI. 



50 S. Dague 

 

3.1   Simplicity 

KISS, keep it simple stupid, is an overriding motto of the OpenHPI team. When doing 
interface design, this means taking the simplest possible approach to most problems.  
Simple solutions are mostly likely to be implemented correctly, and not contain 
hidden edge cases or design flaws.   

Simplicity of design also means making usage simple for users.  Many users of 
OpenHPI will do nothing more than download an RPM package from the OpenHPI 
website, install it, and expect to be off and running.  So OpenHPI must conform to 
what they intuitively expect it to be from square one.  For this reason, OpenHPI is 
only a single C shared library which includes a number of hardware plugins.  This 
means that OpenHPI does not consume resources when not being actively used.  It 
gives the user application control over the lifespan and activity of HPI.  The downside 
from this approach is that events which occur while the HPI enabled user application 
is not running may be lost.  However, if the user wasn't running their own application 
to deal with these events in a timely manner, then they probably do not care about the 
events in the first place. 

As a correlation to the concept of simplicity, reuse is another mantra.  Nothing 
should be reinvented if there is suitable code available under Linux to provide that 
functionality.  Code that has been in general use in the Linux community will be more 
robust and better tested than anything that is newly written.  OpenHPI uses glib for all 
complex data structures, net-snmp for SNMP access, libtool for plugin loading, and 
OpenIPMI for one of the IPMI plugins. 

3.2   Broad Hardware Support 

OpenHPI is meant to be a general purpose HPI implementation which will work with 
a very large array of hardware and management protocols.  This includes IPMI based 
machines, white box Linux machines with an SMBus interface, network accessible 
servers or switches with SNMP interfaces, and just about any other network reachable 
device with some type of management interface.  Given that the OpenHPI team is 
only a finite number of individuals, the only way to enable such a vast array of 
hardware is to make it easy for 3rd party developers to do it themselves. 

This requires a well thought out and proven hardware plugin interface.  The plugin 
interface makes it easy for anyone to add support for their hardware.  For instance, 
support for the Linux watchdog device (aka /dev/watchdog) was added with only 360 
lines of code.  The robustness of this plugin interface has been proven by the fact that 
there are currently 8 plugins in the main distribution, which include 2 different 
approaches to IPMI enablement, IBM Blade Center enablement via SNMP, and a 
static hardware simulator. 

In addition to the plugin interface, the OpenHPI team is always asking the 
question, “What additional internal interfaces would make it easier to create a plugin 
or other infrastructure code?”.  This driving question spawned the creation of internal 
interfaces for Resource and RDR entry management, Entity Path manipulation, and Id 
assignment. It is expected that many more such interfaces to be created over time. 



OpenHPI: An Open Source Reference  Implementation 51 

 

3.3   Expectation for Commercialization 

OpenHPI is licensed under a BSD style license, the complete terms of which are 
included with the OpenHPI distribution. The BSD license is generally considered the 
most business friendly of all open source licenses. It provides source code along with 
the binary application. Unlike the GPL, it does not oblige the user to open source 
changes they make to that source code if they don't want to. 

It is the hope of the OpenHPI team that anyone working with OpenHPI, either to 
productize the existing code or enable OpenHPI for new hardware platforms, will 
contribute their changes back to the mainstream. This will reduce the development 
and maintenance cost for those working with OpenHPI. There are many organizations 
joining the OpenHPI team to do just this, and a number of additional organizations 
that have shown interest in joining the effort. 

It is worth noting that these guiding principles for OpenHPI have given the project 
dramatic growth over the past year. In July 2003 there were 5 active developers on the 
project, as of January 2004, that number is over a dozen, with more interested in 
participating every day. 

4   Internals 

4.1   Infrastructure 

The portion of OpenHPI which the user links to, and sits above the hardware plugins, 
is referred to as the infrastructure. The infrastructure is a C shared library built by 
libtool. Although development has been entirely focused on Linux at this point, the 
use of the GNU autoconf tool chain will make it easy to port to other operating 
systems. 

The infrastructure responsibilities include interaction and coordination of 
information from the plugins. It also manages the Domains and all items that are 
domain specific, like the Resource Presence Tables, Domain level System Event 
Logs, and event queues. As will be discussed later, the plugins do not have a global 
enough view to support Domains directly. 

Because all these items are managed by infrastructure, 20 of the 56 HPI API calls 
can be fulfilled by infrastructure without needing to communicate directly with a 
plugin. This means less work for plugin implementors. 

4.2   Pluginsand Plugin API 

Plugins are libtool archives which contain an oh_abi_v2 structure.  This structure is a 
series of 36 named function pointers. These functions represent the plugin API, and 
hence the contract between the infrastructure and plugin.  A plugin implementor need 
only implement those functions that will be supported in their plugin. All unimple-
mented functions will produce UNIMPLEMENTED errors if they are invoked via an 
HPI call. 

The first step of OpenHPI initialization is the parsing of an OpenHPI configu- 
ration file. This will specify which plugins should be loaded in the environment. The 
user can load as many plugins as they desire, as each plugin will provide access to a 
different type of hardware. 



52 S. Dague 

 

Many of the HPI function calls are passed directly to the plugin API with almost 
the same parameters. A good example of this is the System Event Log APIs. If it is 
determined that a System Event Log API is not requesting information from a 
Domain Event Log, then it must be a Resource Event Log call.  The ResourceId is 
used to lookup the associated handler in the Resource Presence Table. This handler is 
then passed its handler_state pointer, and all the same parameters that the Event Log 
API call was passed. 

SA HPI Function Definition 

SaErrorT SAHPI_API saHpiEventLogEntryGet ( 
     SAHPI_IN    SaHpiSessionIdT     SessionId, 
     SAHPI_IN    SaHpiResourceIdT    ResourceId, 
     SAHPI_IN    SaHpiSelEntryIdT    EntryId, 
     SAHPI_OUT   SaHpiSelEntryIdT    *PrevEntryId, 
     SAHPI_OUT   SaHpiSelEntryIdT    *NextEntryId, 
     SAHPI_OUT   SaHpiSelEntryT      *EventLogEntry, 
     SAHPI_INOUT SaHpiRdrT           *Rdr, 
     SAHPI_INOUT SaHpiRptEntryT      *RptEntry 
); 

Plugin API Function Definition 

SaErrorT (*get_sel_entry)(void *hnd, 
 SaHpiResourceIdT id, SaHpiSelEntryIdT current, 
 SaHpiSelEntryIdT *prev, SaHpiSelEntryIdT *next, 
 SaHpiSelEntryT *entry); 

It is worth noting that Rdr and RptEntry fields are not passed down to the plugin 
API call.  Both of these can be derived by the infrastructure from the supplied 
ResourceId and returned SelEntry, so making the plugin do extra work to provide 
these separately isn't required. 

4.3   Handlers 

Just because a plugin is loaded doesn't mean that it is connected to any hardware.  
Although this could be automatically done for local hardware enablement, access to 
remote hardware needs additional information to connect to that hardware.  For this 
reason, the concept of handlers was created. 

Handlers are instances of plugins.  Each handler contains a reference to the plugin 
API functions for the plugin it is derived from.  It also contains local state data (often 
stored in the convenience oh_handler_state structure), and configuration data. 

Handlers are created by stanzas in the OpenHPI configuration file, which include a 
reference to which plugin is being used, and an arbitrary set of name/value pairs 



OpenHPI: An Open Source Reference  Implementation 53 

 

specified by the user. The name /value pairs are used as configuration data by the 
handler during its open call. An example of what this data looks like is listed below: 

Handler Stanzas 

handler snmp_bc { 
 community = “myP@ss” 
 host = “bc1.mydomain.com” 
 entity_root = “{SYSTEM_CHASSIS,1}” 
} 
handler snmp_bc { 
 community = “my0ther” 
 host = “bc2.mydomain.com” 
 entity_root = “{SYSTEM_CHASSIS,2}” 
} 

There is no limit on the number of handlers that can be created.  Each handler 
represents one hardware connection.  How many resources are provided by a single 
handler will be very plugin specific.  For instance, the Linux watchdog plugin doesn't 
provide any resources, just rdrs that are associated with a different plugin's resource.  
The SNMP Blade Center plugin will produce over 50 resources when connected to a 
fully populated Blade Center chassis. 

4.4   Resources and RDRs 

Much of what is at the heart of the HPI specification is the concept of Resources and 
RDRs, and without some basic foundation in the concepts, the rest of this paper will 
make very little sense.  In the simplest terms a  Resource is a physical entity, 
something you can put your hands on.  Examples of Resources include server racks, 
types of servers, cpus, disks, power supplies, and blades of various types.  Resources 
have “attributes”, known as Resource Data Records or RDRs, associated with them 
that provide information about the Resource.  RDRs may be one of 4 types: Sensor 
(voltage, thermal, fan speed, etc.), Inventory, Watchdog, or Control. Resources can 
have capabilities associated with them which tell the user if the Resource is 
replaceable, hotswappable, and/or supports any of the RDR types. The first operation 
an HPI application should do is perform a discovery of all Resources to understand 
what hardware it is interfacing with. 

In short, a Resource is something physical which can (and eventually will) fail. 
RDRs provide mechanisms for managing, controlling, and gathering information 
about these resources. 

4.5   Entity Paths and Resource Ids 

The HPI specification uses the ResourceId (a 32bit value) to uniquely identify a 
resource within the context of an HPI session.  HPI makes no guarantees that this 
Resource Id references the same resource across sessions.  Although convenient for 



54 S. Dague 

 

programmatic use, it makes it difficult to specify a priori that Blade 3 in Rack 2 is the 
machine you need to check on.  Fortunately ResourceId is not the only guaranteed 
unique value for a Resource, Entity Path must also be unique for each resource. 

Entity Paths in HPI represent the topology associated with Resources.  They 
include a series of pairings of entity types with entity instances.  For instance, in 
OpenHPI (which uses zero indexed entity instances) “{ROOT,0}{RACK,2} 

{CHASSIS,0}{SBC_BLADE,4}” means the 5th blade in the 1st chassis in the 3rd 
rack of all the resources seen by HPI.  Given that this entity path must be unique and 
global within the scope of HPI, the OpenHPI team has decided to use it as the base for 
assigning Resource Ids. 

This is done in the following way.  A global table is created internal to OpenHPI.  
Whenever a new entity path is found, a ResourceId is allocated for it.  This 
information is kept in a state file (/var/lib/openhpi/uid.map by default), and written 
out to disk on any change.  Hence, anything short of file system failure won't reset the 
table.  Because of this ResourceId 7 will always refer to the same Entity Path for all 
invocations of OpenHPI on the same machine. 

This is the same Entity Path, and not the same Resource, as there are at least 2, and 
probably more, ways in which an Entity Path might not refer to the same resource.  
The first of which is for FRU resources.  If a piece of hardware fails and is replaced, 
the new hardware will have the same entity path, however it will have different 
inventory information, and may be different in other ways.  The second involves the 
entity_root, and will be described later. 

4.6   Entity Root 

Handlers are responsible for discovering their hardware and creating fully instantiated 
Resources and RDRs for them.  The one sticking point involves the entity path that 
was described above.  A plugin does not inherently have enough information to 
understand how it's resources fit into the over all entity scheme.  A handler 
connecting to a server won't generally have any way to discover which rack that 
server is in, or even what instance value that server should have.  These are decisions 
which must be left to the decision of the local site administrator. 

Every handler stanza must therefore have an entity_root specified.  The value for 
this is the canonical (as defined by the OpenHPI team) string format of the entity 
path.  SAHPI_ROOT is assumed, as it is required for every entity path.  For all parts 
of the path the format is {ENTITY_NAME,ENTITY_INSTANCE}, going from most 
to least significant (which happens to be the reverse order of the HPI struct 
definition).  The entity names are actually the text of the enumeration values minus 
the SAHPI_ prefix, as it is redundant. 

Although it isn't an error if two handlers share a common entity root it does 
produce a warning.  There may be instances where this is required.  The use of the 
Linux Watchdog device will often be one of these cases, as the rest of the resources 
will come from some other handler. 

Obviously, if the administrator changes the entity_root definitions because of a lab 
reorganization all the Resource Ids will now reference different resources than they 
did before. It is expected that a change like this is not done lightly, and application 
owners in the environment would be notified before such a change, but the possibility 
exists nonetheless. 



OpenHPI: An Open Source Reference  Implementation 55 

 

4.7   Domains 

At this point, OpenHPI only supports a single domain.  In the HPI 1.0 specification it 
is explicitly stated that this is allowed, and that resources may appear in multiple 
domains. This implies that all resources would appear in SA_HPI_DEFAULT_ 
DOMAIN. As there isn't yet a standard for security mechanisms in HPI, creating 
other domains seems to only produce more work for the user application at this time. 
This interpretation is 100% compliant with HPI 1.0. 

OpenHPI will support multiple domains in the future.  Domain structure will be 
specified by the site admin in the openhpi.conf file.  Allowing plugins to generate 
domains doesn't make much sense, as they don't have a global view of all the 
resources in the system.   

Given that Entity Path is unique per Resource, OpenHPI will provide multiple 
mechanisms for specifying domains based on matching of Entity Paths.  For instance, 
one could specify a domain as everything which exists under “{ROOT,0}{RACK,1}”.  
Another possibility is to lump all resources which have “{FAN,X}” in their entity 
path into a single domain (i.e. the “all fans domain”).  By providing mechanisms for 
the site admin to specify their own domain definitions, local site policies can be used 
for domain structure instead of arbitrary domain instantiation based on the HPI 
implementation. 

5   OpenHPI in Action 

5.1   Resource Discovery 

The first functionality that any plugin must provide is resource discovery. The 
OpenHPI team wanted to make this process straight forward so plugin writers could 
quickly have prototyped code, and be able to build from it.  Resource discovery also 
demonstrates the event loop that OpenHPI uses to allow plugins to communicate 
information back up to infrastructure. 

All communication from plugin to infrastructure happens via oh_events. The 
oh_event is a union which includes typing information as well as an SA HPI defined 
type. These events can be a standard HPI event type which will be processed and 
returned to the user when saHpiEventGet is called.  They can also be internal only 
events for resource addition/removal, and RDR addition/removal.  The later types are 
used during the discovery process to populate the RPT for the domain in 
infrastructure. 

When saHpiResourceDiscover is called, each handler's discover_resources is 
called in turn.  This lets each handler do whatever is needed to create resource 
definitions. It is expected that the handler creates those definitions as oh_events, and 
stores them in an internal event queue. As soon as this process is complete, the “event 
loop” is entered, and all handlers have their get_event function called until no more 
events are found. Each of these events is processed in turn. If it is a resource or RDR 
related event, the RPT is modified appropriately. If it is an HPI event, it is added to the 
event queue for the domain, where the user will find it on the next saHpiEventGet call. 

The beauty of the plugin API is that it defines a very real data boundary between 
the handlers and the OpenHPI infrastructure. Information sent down to the handlers is 



56 S. Dague 

 

done so only as SA HPI defined types, and information sent up from the handlers is in 
the form of events that are mere wrappers for SA HPI defined types. This ensures that 
new contributors or plugin implementors for OpenHPI need not learn a whole new set 
of internal types to produce working plugins. Many members of the OpenHPI team 
who have been working on plugin enablement haven't ever looked into the OpenHPI 
internals. The interface is clear enough that it was never required. 

6   Interoperability 

Interoperability is extremely important to the OpenHPI team. These means both 
interoperability with other HPI implementations, as well as other management 
interfaces and protocols. 

6.1   Mining SNMP Data 

HPI has a legacy in IPMI, however it is sufficiently abstract that this isn't the only 
mechanism that can be used to fulfill HPI. Over the 20 years since SNMP was 
defined, it has become a de facto standard to communicate with network attached 
devices programaticly. Many servers and other network devices on the market today 
provide SNMP interfaces for management.  It seems only natural that one would want 
to also have access to such devices and servers via SNMP. 

The first working plugin which uses this methodology is the SNMP Blade Center 
plugin, which enables the IBM Blade Center. The management module (i.e. shelf 
controller) for the Blade Center provides a number of management interfaces.  There 
is a web based control panel that is appropriate for human interaction, and an SNMP 
agent appropriate for programmatic interface. The SNMP agent exports everything 
needed for HPI enablement. 

For instance, there are data fields that provide presence information for fans, power 
supplies, switches, blades, and the management modules. These are modelled as 
resources. Most of these items have associated serial number and version information, 
which fits well into Inventory Records. Thermal, Voltage, and Fan Speed sensors are 
all Sensor RDRs. User controllable LEDs are controls, while read only LEDs are 
discrete sensors. 

The system chassis has an Error Log which maps nicely to the System Event Log 
(SEL) definition. All entries in the Error Log are provided to the user via the SEL 
interfaces. Those entries which can be translated to HPI defined events are, while 
those that don't have a related event type are passed as OEM events with the data 
payload being the first 31 characters of the error message.  Each of these errors which 
translate to HPI events are also passed up through the HPI infrastructure as such. 

The only real challenge for the enablement of the Blade Center was the mapping of 
SNMP data types to HPI types. A large number of definitions relating SNMP OIDs to 
specific HPI types and data elements was required. Over time this has been 
normalized to a set of definitions which can be applied to each blade, fan, or other 
resource in turn.  Through this work the OpenHPI plugin API was adjusted to ensure 
maximum compatibility with SNMP devices. 

It is expected that this work can be used by others to further enable other SNMP 
devices, like Network Attached Storage, programmable switches, intelligent power 



OpenHPI: An Open Source Reference  Implementation 57 

 

supplies, or anything which allows reasonable control via SNMP. It is our hope is that 
the field of SNMP plugins will grow dramatically. The OpenHPI team is currently 
working on two more plugins in this model, and it is known that at least one outside 
group is using this approach for their cluster control. 

6.2   IPMI and ATCA 

As mentioned previously, HPI has a legacy in the Intelligent Platform Management 
Interface (IPMI) specification. The OpenHPI project is working diligently on enabling 
IPMI based servers with two different plugins. The first plugin uses the OpenIPMI 
library which supports a wide range of IPMI implementations.  It provides access to 
Sensors, the Management Controllers, and Server Event Logs. There is also an 
OpenHPI plugin which interfaces directly with IPMI devices, which may be better 
suited for specific vendor implementations. Both approaches are fully functional, and 
part of the standard OpenHPI distribution. 

With the advent of the Advanced Telecom Computing Architecture (ATCA), the 
OpenHPI team is committed to providing support via its IPMI plugins. Work is under 
way with the OpenIPMI team to enhance the software to support Shelf Managers and 
other ATCA specific extensions. 

6.3   Subagent 

In addition to mining SNMP data from existing devices, the OpenHPI team went a 
step further and defined an SNMP MIB which exports HPI in an SNMP friendly way. 
When the SNMP subagent work began, the first attempt was to produce a generic 
bladed MIB which would be used to describe any bladed environment.  Although 
there would be a lot of value in this approach, it would relegate the HPI support only 
to bladed architectures.  The complexity to do this correctly also balloons quickly. 

A much simpler approach was taken, which in many ways is less SNMP-like.  HPI 
can be thought of as a set of data structures:  Resources, RDRs (all four types), 
EventLog Entries, and Events.  The simplest, and most flexible possible 
representation of these items in an SNMP context, is to define a resource table, and 
dump all of the resources in there. The same can be done with Sensors, Controls, 
Watchdogs, and Inventory Data. In the end, this boils down to a small number of very 
large data tables. 

The HPI SNMP subagent is just an HPI user application, and hence can be built 
against any HPI implementation.  It can then turn any other HPI implementation into 
an SNMP source that data can be mined from. This will let OpenHPI interoperate 
with other HPI instances on the same cluster. As the code for both the subagent and 
the SNMP Client plugin are open, it will allow any other HPI implementation to use 
this same mechanism to interface with other HPI instances as well. 

Some may argue that this is an extra level of abstraction that isn't required. There 
may be instances where a client application will be going from SNMP to HPI back to 
SNMP back to HPI back to SNMP, and so forth. This may add latency on each 
transition. However, SNMP defines a protocol, not a data structure. Current SNMP 
client applications must be written with one or more MIB in mind to access data in 
any reasonable way. The explosion of different hardware MIBs specific to each 
vendor has made interfacing with heterogeneous hardware via SNMP time 



58 S. Dague 

 

consuming. By using HPI to create a common structure for how this hardware will be 
modelled, the OpenHPI team has brought together the best of the legacy of the SNMP 
community with the unifying ideas of the HPI specification. 

7   Testing 

Testing and reliability is an important part of any software program, and OpenHPI is 
no different in this regard.  Three different testing activities are happening as part of 
the OpenHPI test effort. 

The first is the HPI conformance test. In order to claim that an application is HPI 
compliant one must produce a conformance test suite demonstrating that fact. The 
OpenHPI team started this effort when the original development effort was started.  
These tests are available for other HPI implementations to use as part of their own self 
certification. The HPI conformance test has already been adopted into the Linux Test 
Project, as a Linux API test. 

The second effort is a new functional test. This delves deeper than the conformance 
test, and is specific to OpenHPI at this time, as it checks for specific expected data 
values.  This test suite will continue to grow over time. 

Both the conformance and functional tests look at OpenHPI as a whole. Although 
that is extremely valuable, it is hard to use these mechanisms to force edge conditions 
on lower level components.  The only way to do this in a robust fashion is by creating 
unit tests for internal interfaces, and testing individual c files separate from OpenHPI 
as a whole. Fortunately, the automake infrastructure used by OpenHPI provides a unit 
testing framework for just this purpose. 

Unit (or component) tests are created in a t/ subdirectory of each source directory. 
When the “make check” target is run, each of these are run in turn, and a total test 
result is reported.  The gcc coverage tools are used as a gage of the code coverage that 
results from these tests. The unit test effort has only recently started, with plans for 
full unit test coverage of all infrastructure components by summer 2004, and 
significant test coverage of included plugins by the end of 2004. 

8   Community 

One of the main advantages of the OpenHPI effort is the open nature of the 
development.  This provides rapid feedback to users on the direction that the software 
is developing. It also provides open forums for users to request new features, and 
drive the direction that OpenHPI evolves. 

The OpenHPI (http://openhpi.org) website is the definitive source of infor-mation 
relating to the project. News relating to the project, detailed current implementation, 
documentation on OpenHPI, mailing list archives, and links to released and evolving 
source code are all provided. 

The openhpi-devel mailing list is the best way to communicate with members of 
the OpenHPI team, as everyone watches that list closely.  However feedback can also 
be given via and one of three public issue trackers as well.  There is a bug tracker for 
known or suspected bugs found in the OpenHPI code.  There is also a feature tracker 
for features that are desired for future OpenHPI releases.  Any items added to these 



OpenHPI: An Open Source Reference  Implementation 59 

 

trackers are quickly assessed, and assigned to a developer and a release number for 
when they will be addressed.  New bugs reports and feature requests from users or 
potential users are very welcome.  These trackers also provide a roadmap to near term 
deliverables for OpenHPI. 

The final tracker is an HPI specification issues tracker.  During the development of 
any HPI implementation, issues will be found with the specification.  Sometimes they 
are clarifications which need an immediate interpretation, other times they are 
assumptions which might not hold true for all types of hardware.  The OpenHPI team 
is committed to documenting these items which are found, and ensuring that any 
interpretation made by the OpenHPI team of the specification is well documented, 
and hopefully incorporated into future revisions of the specification. 

OpenHPI is working under the “release early, release often” motto of Open Source 
development. The 15th of every month is release day, providing newly updated binary 
distributions around that time each month.  Each release clearly specifies the features 
that have been added, and the bugs that have been resolved, most of which are 
references to bug or feature tracker entries, so detailed information on the issue and 
solution can be found by anyone. 

The team at one point attempted to perform real time meetings every other week 
via Internet Relay Chat (IRC).  However, the development team has grown to the 
point where it now spans East, Central, and Pacific timezones in the US,  as well as 
China, and Germany.  For this reason, email, which can be read and responded to at 
any hour of the day, is the preferred communication method for the OpenHPI team. 

9   Future Directions 

One of the obvious additions in the future would be the support for more hardware 
types. The project has started the process of enabling the IBM xSeries servers which 
have a Remote Supervisor Adapter.  There is at least one external group working on 
cluster power control for their High Performance Cluster, which the OpenHPI team 
will be encouraging and helping along. 

Similar to the SNMP MIB design done by the group, a CIM (Common Information 
Model) schema could map extremely well to the HPI specification.  CIM is becoming 
very prevalent in the Enterprise computing space, and with the maturation of the 
Pegasus CIM implementation, there is now a robust open source CIM engine 
available to all. It many ways this modeling might be far more natural than the SNMP 
model. The OpenHPI team plans to work on such a CIM model this year along with 
other interested parties. 

In the Linux world, C is still king, however few people write management 
applications in it.  Higher level languages such as Perl and Python are preferred due to 
their more rapid development cycle.  Although outside of the scope of the HPI 
interface specification, the project plans to create higher level language bindings 
against OpenHPI that will open up the HPI data and functions to a much wider range 
of application programmers. 

The universality of hardware enablement, modeling in SNMP and CIM, and higher 
level language bindings will all help in building a community of application 
developers for HPI.  Our hope is to have a number of management applications which 



60 S. Dague 

 

use HPI available from the OpenHPI website over the next year.  The OpenHPI 
distribution already includes a set of HPI utilities, which are command line interfaces 
which use HPI to interface with hardware.  There are also numerous open source 
clustering teams that have been waiting for something like HPI to enable much slicker 
install and maintenance mechanisms, and they are starting to take great interest in the 
OpenHPI effort.  We hope to see the ecosystem for HPI user applications grow 
significantly during the next year. 

10   Conclusions 

HPI 1.0 has gone a long way to providing a common interface for hardware 
management. The OpenHPI effort is building even more momentum towards the 
adoption of HPI as an Industry standard. The open nature of the product brings HPI to 
an extremely wide audience. The plugin interface makes it easy for 3rd parties to HPI 
enable their hardware or network devices with a small amount of development effort. 
The integration with SNMP enables both the use of existing SNMP management 
software with HPI enabled hardware, and HPI management software with SNMP 
enabled hardware. The support for IPMI and ATCA further strengthens the use of  
these standards in the Linux world. 

In all these ways, and many more the OpenHPI project is becoming a standard 
reference implementation, robust enough to use in production environments. 
OpenHPI is helping HPI gain acceptance and adoption in the Linux community and 
many industry sectors.  We see this adoption increasing over time, and HPI becoming 
a standard system service on all Linux platforms due to the efforts of the OpenHPI 
project. 



 

M. Malek et al. (Eds.): ISAS 2004, LNCS 3335, pp. 61–72, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Quality of Service Control by Middleware 

Heinz Reisinger 

SIEMENS AG ÖSTERREICH,  
Communication Systems and Solutions, Vienna  

heinz.reisinger@siemens.com 

Abstract. Assuring a negotiated quality of service for a client is an important 
matter of availability. In value added telecommunication servers quality of 
service control mainly means preferring high priority applications in situations 
of resource shortages at the expense of applications with lower priority. 
    Middleware that shall host arbitrary, heterogeneous services, which in turn 
are designed to serve heterogeneous applications, needs centralized control 
mechanisms for assignment of limited resources to services and applications. It 
must be explicitly emphasized, that every kind of centralized resource control 
itself consumes resources, which consequently reduces the system’s 
performance. The challenge of the middleware is to find a balance between 
needed resource control and optimized performance.  
    On the other side intelligent clients shall deliberately select the transport 
medium to access the server that hosts their needed services, dependent on the 
priority and reliability requirements of the actual message.  
    The present contribution discusses several alternatives how servers can carry 
out quality of service control, bearing in mind that some alternatives must be 
provided in parallel because different clients have different needs. 

1   Introduction 

From the viewpoint of a telecommunication service provider availability is usually 
measured in out times per time unit. Several well-proven concepts for reducing the 
out time probability are in place in every middleware on the market: 

• redundant hardware with automatic handover functions and optimized load 
balancing; 

• distributed software with synchronization points and context switches; 
• high available databases; 
• automated backup / restore functions;  
• etc. 

The present contribution attends to another viewpoint, that of the telecommuni- 
cation services’ clients. Obviously they are less interested in overall availability of the 
server than in the availability of their individual applications. 

Both viewpoints have one common rule: The higher the availability the more 
expensive are the services. In fact, even small improvements of availability usually 
result in considerable rises of costs, especially if the availability moves beyond the 
99% margin. Different clients and even different applications of one and the same 
client obviously have different requirements regarding availability and want a 
customized balance between availability and costs.  



62 H. Reisinger 

 

Fig. 1. Points of Interest from Client’s View 

Therefore the concept of a client / application specific quality of service has 
evolved. Clients negotiate the needed quality of service for their applications before 
they go on air and they select the transport medium that is appropriate for their needed 
quality of service. The higher the quality of service the more they are charged for 
message transport and processing. 

2   Criteria of Quality of Service 

Traditionally quality of service is an important measure for transport networks. A 
lot of standards for any type of networks have been published. As very coarse-
grained summary of these concepts, quality of service for transport networks 
includes mainly  

• maximum number of transmitted information units per time unit, 
• average number of transmitted information units per time unit, 
• maximum number of concurrent accesses, 
• average number of concurrent accesses, 
• maximum number of allowed transmission failures per time unit, 
• average number of allowed transmission failures per time unit, 
• maximum answer times, 
• average answer times. 

Different transport networks have different characteristics and different costs. 
Intelligent clients are aware of their various options and select the transport network 
according to the quality of service needed for every single message. 

Once client requests have successfully reached a server we need another 
classification for quality of service. Heterogeneous service requests arrive in 
arbitrary intervals and are only  limited  predictable.  Thus  temporary  shortages  of  
a  server’s resources are inevitable. Other reasons for temporary resource shortages 

 Client / 
Application 

Client / 
Application 

Client / 
Application 

Client / 
Application 

A
cc

es
s 

P
o

in
t 

/ L
o

ad
 B

al
an

ce
r 

/ 
D

is
p

at
ch

er
 

 
 
 

Server node 1 

Server node n 

DB 

Backup / 
Restore 

S
er

vi
ce

 
A

 
S

er
vi

ce
 

B
 

 S
er

vi
ce

 
Z

 

S
er

vi
ce

 
A

 

S
er

vi
ce

 
B

 

 S
er

vi
ce

 
Z

 

Transport 
Networks 



 Quality of Service Control by Middleware 63 

 

are failures of redundant server units, which put more load on the remaining units. 
For the following considerations of the present contribution the following relation 
applies: 

The higher quality of service an application has got guaranteed, the higher is its 
priority in the competition with other applications for scarce resources. 

This means, high priority applications have a better chance to be served timely and 
especially not to be dropped in case of resource shortages. 

With respect to this quality of service definition no absolute priority can be 
guaranteed. The priority of a concrete client’s/application’s request obviously is 
dependent on the concurrent requests of all other clients/applications. It can be only 
guaranteed that high priority applications are favored against ones with lower priority. 
Between applications with equal priority the strategy “first come, first serve” is best 
proven. 

Typical examples for competing applications are voice dialogs versus SMS traffic 
or plain web browsing versus e-commerce applications.  

• Voice dialogs need a guaranteed short answer time; SMS traffic is more delay 
tolerant. On the other hand, out times are less critical in voice dialogs. 

• Both, plain web browsing and e-commerce applications, are not delay tolerant, but 
out times during plain web surfing can be much easier accepted than in  
e-commerce. 

Agreements, which guarantee clients / applications a minimum number of 
processed messages per time unit, can be implemented by giving that client/ 
application a top start priority which decreases when the guaranteed number of 
successfully processed requests1 is reached. The present contribution assumes 
generally that clients / applications must be registered together with various attributes 
at the telecommunication service provider’s servers before they can access any 
services. Some attributes may specify dynamic priorities, which depend on the 
number of previously processed requests. 

The second prerequisite is a client / application specific measurement of the 
number of requests. Both prerequisites are state of the art in telecommunication 
servers and are not further discussed in this contribution.  

Typical limited resources that must be assigned to client / application requests with 
caution, are 

• CPU time, 
• memory, 
• permanent storage, 
• message waiting queues, 
• service enablers, 
• bandwidth of interfaces to service enablers. 

                                                           
1 Of course it is assumed that the server’s capacity is sufficient to process its top 

priority.requests at all. 



64 H. Reisinger 

 

3   Server View 

3.1   Quality of Service Negotiation 

All concepts of quality of service control have one common prerequisite. It must be 
strictly avoided that the majority of clients / applications issue high or highest priority 
requests. Such scenarios destroy every strategy. Then the few low priority requests 
are either not served at all or - on the contrary - executed prior to the majority of high 
priority requests, which must be handled “first come, first serve”. The ineffective 
resource control puts additional load on the resources. In fact, if such scenarios cannot 
be avoided clients are better off with no quality of service control at all. 

The most effective means for providers of servers hosting telecommunication 
services to avoid an inflation of high priority requests is via the price of access. The 
costs of high priority access must be considerable higher that that of requests with 
medium or low priority. Providers need administrative means to adjust the ratio 
between quality of service and price dynamically. 

Another option is to enable only VIP clients to send high priority requests. 
Clients / applications may get their relative quality of service  

• either fixed when registering at the telecommunication provider’s system, 
• or variable per request. 

If the first option is selected clients must have the possibility to dynamically 
change their applications’ assigned quality of service. 

A scale with 2 to 5 priority levels has proven to be feasible. According to our 
experience a higher number of levels enhances the basic load of the middleware with 
no further advantages for the clients. 

3.2   Quality of Service Control 

The SIEMENS middleware offers 3 mechanisms of resource control, which can be 
combined due to the concrete needs of service providers and their clients. In order to 
be able to select a specific combination of mechanisms a service provider must be 
aware of the general strategy how the middleware processes concurrent requests.  

The most important measure for systems providing telecommunication services is 
their performance; for the service providers this is even more important than 
availability. The best performance can be achieved by architectures that deploy a 
fixed number of processes with a fixed number of threads, which resolve service 
requests in parallel as mutually independent as possible. Adding and removing 
threads and processes during service execution is very resource consuming and is 
avoided wherever possible. Any kind of resource control impairs the threads’ 
independency and consequently the performance of the whole system. 

The following three resource control mechanisms have different impacts on the 
system’s performance.  

Servers must keep in mind which kind of resource control a registered application 
can undergo principally. For instance priority control of intermediately stored 
messages is unacceptable for real time or near real time applications, even if they are 
served with a high priority. 



 Quality of Service Control by Middleware 65 

 

3.3   Quality of Service by Reservation of Threads for High Priority Requests 

The middleware holds a pool of threads available for processing the requests of 
clients / applications. In this pool a subset of threads is explicitly reserved for high 
priority requests. Crucial to this concept is a highly efficient dispatcher function, 
which screens incoming messages and assigns them a high priority or standard thread. 
Criteria for dispatching are  

• either the message type  
 (if a fixed relation between message type and priority exists), 
• the identification of the sending client / application, 
• or an attribute in the message header. 

 Client / 
Application

Client / 
Application

Client / 
Application

Client / 
Application

D
is

p
at

ch
er

 

Server node 1 

Server node n 

Low priority 
threads 

High priority 
threads 

Low priority 
threads 

High priority 
threads 

 

Fig. 2. Reservation of Threads for High Priority Requests 

This strategy guarantees resources for a fixed amount of high priority requests 
regardless of the amount of concurrent lower priority requests. If the amount of high 
priority requests exceeds this fixed amount the remaining ones are handled as low 
priority requests. 

Advantages. This mechanism of priority control puts the least load on the system; this 
means it is the most performant one. The used dispatching algorithms have proven to 
be sufficiently efficient. The ratio of high priority and standard threads can be easily 
adjusted due to access statistics. 

The dispatcher can be easily configured to consider new clients/applications and 
message types. 

Disadvantages. High priority threads cannot be used for lower priority requests; they 
really must be reserved. If the number of reserved threads for high priority requests is 
not in line with the actual average number of high priority requests the server leaves 
some of its capacities unused. 



66 H. Reisinger 

 

In practice this leads to a limitation of the possible priority hierarchy to 2 levels. 
Splitting up the thread pool into more subsets leaves even more threads idle if no 
requests of a certain priority occur.  

This strategy assumes implicitly that all threads have equivalent needs for the 
remaining scarce resources. Although this assumption is met statistically, in some 
exceptional scenarios the strategy might not work. 

3.4   Quality of Service by Priority Control of a Message Handling Component 

This strategy uses an upgraded message handling system. As in usual message 
handling systems services subscribe to messages from certain applications. 
Subscription updates are done whenever a new client registers its applications at the 
server. 

Incoming messages are published. As a difference to a common publish / subscribe 
system the upgraded message handling system prefers high priority requests. Low 
priority requests may be delayed or even thinned out. The criteria, which messages 
are to be preferred, are the same as for the dispatcher described in the previous 
chapter. 

Fig. 3. Priority Control via Message Handling Component 

Advantages. The message handling component has more opportunities than a 
dispatcher. With the expense of some more needed processing power the message 
handling component can carry out more sophisticated quality of service control with 
some more priority levels. 

The overall performance loss caused by this strategy is still below 15%. 

 Server node Client / 
Application 

Client / 
Application 

Client / 
Application 

Client / 
Application 

M
es

sa
g

e 
H

an
dl

in
g

 In
pu

t 
Q

u
eu

e 

M
es

sa
g

e 
P

ri
o

ri
ty

 C
o

n
tr

o
l 

M
es

sa
g

e 
H

an
dl

in
g 

O
ut

p
u

t 

Service 
A 

Service 
B 

Service 
Z 

 



 Quality of Service Control by Middleware 67 

 

Disadvantages. A quite tight coupling between requesting clients / applications and 
services is needed. Configuration of this coupling is complex. For providers whose 
clients register and deregister very dynamically this strategy is not optimal. 

3.5   Quality of Service by Priority Control of Intermediately Stored Messages 

Accepting and acknowledging incoming requests is completely decoupled from 
processing. Incoming messages are collected in a permanent intermediate storage 
without any initial processing. All messages have a priority assigned; the criteria are 
the same as that of the other strategies. Background processes select waiting requests 
from the intermediate storage by their priority and by their age and execute them 
asynchronously. 

Fig. 4. Priority Control of Intermediately Stored Messages 

Advantages. This strategy is especially suited for clients / applications that require 
that their waiting messages survive a system outage, but have no stringent answer2 
time requirements. The background processes have sufficient resources to undertake 
complex quality of service control. In addition to up to 5 priority levels the 
background processes can control sequential dependencies between distinct messages. 

Disadvantages. This strategy needs a database for the intermediate storage of incoming 
requests. This may increase the server’s costs. Because all incoming messages are first 
intermediately stored in the database the overall performance of the server is reduced 
considerably, we have experienced a performance decrease of up to 40%. 
                                                           
2 Answer in this context means an indication of successful or unsuccessful processing, not just a 

receive acknowledgement.  

 Server node Client / 
Application 

Client / 
Application 

Client / 
Application 

Client / 
Application 

M
es

sa
g

e 
H

an
d

lin
g 

In
p

u
t 

Q
u

eu
e 

M
es

sa
g

e 
P

ri
o

ri
ty

 C
o

n
tr

o
l Service

A

Service 
B

 

Service
Z

Intermediate 
Storage 



68 H. Reisinger 

 

For client / application requests needing very a short answer time this strategy is 
not suited. Optionally for messages with the highest priority this disadvantage can be 
overcome by exceptionally not storing these requests intermediately but processing 
them synchronously. 

3.6   Handling of Low Priority Messages  

Handling of low priority messages differs substantially due to the strategies of quality 
of service control described in the previous chapters. 

3.7   Penalizing Low Priority Messages in Case of Resource Shortages 

If quality of service control is carried out by reserved threads or by a message 
handling component, low priority messages are handled fully equally as ones with 
high priority as long as sufficient resources are available. Only if resources are 
lacking low priority messages are discriminated. 

The best-proven strategy is to thin out messages gradually in case of resource 
shortages. Target is to adapt the number of actually processed requests smoothly to 
the amount of available resources. Oscillating should be avoided because this effect 
reduces the overall number of processed requests unnecessarily. 

 

Fig. 5. Rejecting Thread Assignment to Low Priority Requests 

A typical approach is to start to reject, e.g., every 4th low priority message if the 
server determines a resource shortage. As long as this resource shortage remains or 
gets even worse the ratio of rejected low priority messages rises. As soon as more 
resources become available again the ratio of rejected messages falls.  

 Client / 
Application

Client / 
Application

Client / 
Application

Client / 
Application

D
is

p
at

ch
er

 

Server node 1 

Server node n 

Low priority 
threads 

High priority 
threads 

Low priority 
threads 

High priority 
threads 

 



 Quality of Service Control by Middleware 69 

 

Fig. 6. Rejecting Delivery by Message Handling Component 

This treatment of low priority messages is a commonly used overload handling 
pattern.  Of  course,  if  the  server  reaches  a  state  in  which  100%  of  low   
prioritymessages are blocked and needed resources are still not sufficiently available, 
the next escalation steps of overload handling also affect higher priority messages. 

3.8   General Preference of High Priority Messages 

If quality of service control is applied to intermediately stored messages low priority 
messages are always discriminated in favor of ones with higher priority. Whenever 
resources become available the server selects one of the intermediately stored requests 
to be processed. The priority of the request is the most important selection criterion.  

Of course, it must be prevented that once accepted and stored low priority requests 
remain unprocessed forever as long as messages with higher priority are coming in. 
To this end every thread works according to a schedule, which controls the execution 
percentage of messages of each priority. Operators may adapt this schedule per 
administration.  

In case of actual resource shortages a further thinning out of lower priority 
messages comes into effect, thus combining the strategies. 

4   Client View 

Usually Clients and their applications have a choice of different ways how to transmit 
their requests to a server. In a typical environment clients may select between 

• public ISDNs, 
• PLMNs (GSM, GPRS, UMTS), 

 Server node Client / 
Application 

Client / 
Application 

Client / 
Application 

Client / 
Application 

M
es

sa
g

e 
H

an
dl

in
g 

In
pu

t 
Q

u
eu

e 

M
es

sa
g

e 
P

ri
o

ri
ty

 C
o

n
tr

o
l 

M
es

sa
g

e 
H

an
d

lin
g

 O
u

tp
u

t 

Service 
A 

Service 
B 

Service 
Z 

 

 



70 H. Reisinger 

 

• leased lines, 
• IP networks, 
• WLANs,  
• etc. 

These transport media differ in availability (dependent on the client’s actual 
location), price - and quality of service (regarding bandwidth, latency, throughput, 
etc.). The main contribution clients can do themselves for the quality of the service 
they access is to select the proper transport medium. Clients need schedules, which 
control their preferred route dependent on 

• their actual position, 
• date and time, 
• acceptable transmission costs and 
• priority of a concrete request. 
 

Fig. 7. Selection of Transport Medium 

Such schedules are very dynamic in nature. Coverage of transport networks 
changes continuously, prices are very volatile due to permanent discount offers of 
various providers and even the quality of service offered by a provider changes. It is 
unrealistic that clients are able to hold their schedules up to date manually in order to 
retain their desired ratio between costs and quality of service. 

It is up to the provider of telecommunication servers and services to provide their 
clients with regular or even event driven updates of optimal access routes. Schedules 
may be  

 
Client / 

Application

Client / 
Application

Client / 
Application

Client / 
Application

Server 
node 

Transport 
Network,  
e.g. GSM 

Transport 
Network,  

e.g. WLAN 

Transport 
Network,  

e.g. GPRS

Transport 
Network,  
e.g. Web



 Quality of Service Control by Middleware 71 

 

• updated via Web serving explicit client requests;  
• they may be loaded as applets into a client’s browser  
• or they may be delivered via mobile clients’ air interfaces. 

5   Summary 

Assuring a convenient quality of service in a client-server session needs contributions 
of both sides. The server’s middleware must provide efficient means of resource 
control and request-priority driven assignment of resources to clients / applications. 
The present contribution has discussed three basic strategies for this purpose: 

• explicit reservation of resources for high priority requests; 
• preferred delivery of high priority requests to the processing service instances; 
• strict decoupling of request acceptance and request processing whereby processing 

is priority driven. 

These strategies have different effects on the overall system performance and on 
the handling of low priority requests, which have been discussed thoroughly. Server 
middleware should be able to offer combinations of the presented strategies to meet 
the needs of heterogeneous clients and applications. Principles for proper 
combinations have been presented in the contribution. 

The client must carry out an intelligent selection of available options for message 
transmission. It is up to the server to provide its registered clients with the needed 
intelligence. 

The Communication Systems and Solutions branch of SIEMENS AG Österreich 
has issued its ServiceXpress product line for some years. ServiceXpress products 
consist of a generic middleware and a configurable set of services. Main areas of 
ServiceXpress products are  

• administration and customizing of intelligent telecommunicating services, 
• statistics warehouse, 
• positioning solutions, 
• mobile traffic services, 
• mobile entertainment services. 

The underlying common middleware of these services, the SX Framework, is 
capable of a powerful quality of service management and control based on prioritized 
assignment of processing resources. It is capable to provide the service’s clients with 
stubs for intelligent transport medium selection. 

6   Glossary and Abbreviations 

Application: Software of a service provider or a 3rd party that accesses published 
services for its purposes. 
Client: Clients are in a contract relation with service providers. Typically, but not 
necessarily, they have several applications, which are users of the provided services. 
 



72 H. Reisinger 

 

GPRS:General Packet Radio Service. 
GSM: Global System for Mobile Communication. 
ISDN:Integrated Services Digital Network. 
Message: Used as synonym for service access. 
PLMN:Public Land Mobile Network. 
Registration: Clients and their applications must be known to a server before they are 
allowed to access services. During registration clients and applications specify their 
attributes. Relevant in the context of the present contribution are all static priority 
attributes. 
Request: Used as synonym for service access. 
Server: Computer system hosting a set of services offered by a service provider for 
access to registered applications. 
Service access: One time use of functionality offered and published by a service 
provider. 
Service enabler: Backend system accessed by a service to carry out its published 
functionality. 
Service: Functionality hosted on a server being published for use by registered 
applications via open interfaces. 
SMS:Short Message Service. 
UMTS: Universal Mobile Telecommunications System. 
WLAN:Wireless Local Area Network. 

References 

1. 3GPP TS 23.107, Quality of Service (QoS) concept and architecture; 
2. 3GPP TS 23.207, End-to-end Quality of Service concept and architecture. 



 

M. Malek et al. (Eds.): ISAS 2004, LNCS 3335, pp. 73–85, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Benefit Evaluation of High-Availability Middleware 

Jürgen Neises 

Fujitsu Siemens Computers, Düsseldorf 
juergen.neises@fujitsu-siemens.com 

Abstract. This paper presents a benefit evaluation of high availability (HA) 
middleware based on a field survey. Various features which might be delivered 
by HA middleware have been evaluated by the participating companies. These 
companies consist of ISVs, solution providers, application developers, network 
equipment manufacturers, integrators and others. The survey is evaluated using 
the Kano approach. The Kano method helps to identify key features of HA 
middleware, which are relevant from a user’s perspective: excitement factors, 
basic factors, and  performance factors. 

1   Introduction 

RTP4 Continuous ServicesTM (RTP4CS) [1,2,3,4] is a high availability (HA) 
middleware solution which conforms to the platform specification of the Service 
Availability™ Forum (SAForum) [5,6]. It addresses users who need to achieve a true, 
permanent availability of their applications.  

A survey has been carried out to learn more about the customers‘ attitude towards 
the benefits of the functionalities offered by an HA middleware layer. RTP4CS has 
been used as reference point in this survey.  

Through this survey, the following questions should be answered:  

• what are the essential features of an HA middleware like RTP4CS from a 
customer’s point of view, 

• what can be the most important next steps of development according to the 
customer’s priorities, 

• who are the customers who are most interested in HA middleware features and are 
an optimal target group for marketing activities. 

2   Approach of Survey 

The survey is used as an analysis of customers’ expectations regarding HA 
middleware. Among several models, the Kano model enables the analysis of the 
influence of product or service features on customer satisfaction [7,8]. The Kano 
model is used to determine the most  valued  requirements and  customer expectations 

1 Results of a joint study with the Chair for Business and Administration with focus on 
Logistics (Prof. Dr. habil Horst Wildemann); special thanks to Dr. Monika Bauch for her 
commitment and outstanding work. 



74 J. Neises 

 

Fig. 1. Kano Model 

within planning profiles of complex products and customer environments. This 
approach supports the goals of the survey in an optimal way. 

Within the Kano model, customers’ requirements on products or services are split 
into three classes of attributes (see figure 1). Features of these classes influence 
customer satisfaction in different ways: 

• Basic factors. Basic features are essential for any customer. Lacking their 
fulfilment results in dissatisfaction. Hence basic features are a kind of gate to the 
market. Within an analysis of requirements, basic features are classified based 
upon their importance for the customer. A missing highly valued basic feature will 
result in strong dissatisfaction of the customer. 

• Perfomance factors. Performance features are used to evaluate a product’s or 
service’s performance in comparison to a competing offer. These features evoke 
customer satisfaction, if requirements are fulfilled or even exceeded. However, 
lacking their fulfilment results in dissatisfaction. Depending on the relevance of 
these features, the performance of a product or service is rated within the analysis 
of the survey. The higher a feature is rated, the stronger is its influence on 
performance and satisfaction. 

• Excitement factors. Excitement features are responsible for customer satisfaction. 
Missing excitement features do not result in dissatisfaction, since those features are 
not expected. Excitement features cannot replace basic features. However, they 
increase the perception of usefulness of an offered product or service. Excitement 
features increase differentiation and raise customer satisfaction. Analogously to 
basic features, excitement features are rated corresponding to their customer value. 

The appreciation of use  
increases with the steepness
of the slope. The customer

dissatisfaction increases, if basic
requirements are not fulfilled.

Excitement factors:
Initiate satisfaction if they are 

offered. They increase the noticed 
benefit of the core functionali ty

(100%)

(0%)
(25%)

(50%)(75%)

Basic factors:
Minimum features which 

represent the core functionality 
of a product or a service

(0%)

(75%)

(25%)

(100%)

(50%)

(0%) 
(75%)

(50%)

(100%)

(25%)

Requirement classes …

High customer
satisfaction

Dissatisfaction
of the customer

Expectations
exceeded

Expectations
not fulfilled

Performance factors:
Attributes which lead as well to 
satisfaction  as to dissatisfaction

The appreciation of use  
increases with the steepness
of the slope. The customer

dissatisfaction increases, if basic
requirements are not fulfilled.

Excitement factors:
Initiate satisfaction if they are 

offered. They increase the noticed 
benefit of the core functionali ty

(100%)

(0%)
(25%)

(50%)(75%)

Basic factors:
Minimum features which 

represent the core functionality 
of a product or a service

(0%)

(75%)

(25%)

(100%)

(50%)

(0%) 
(75%)

(50%)

(100%)

(25%)

Requirement classes …

High customer
satisfaction

Dissatisfaction
of the customer

Expectations
exceeded

Expectations
not fulfilled

Performance factors:
Attributes which lead as well to 
satisfaction  as to dissatisfaction



Benefit Evaluation of High-Availability Middleware 75 

 

The Kano analysis is performed in three steps. Firstly, the scope of the questionnaire 
has to be defined. This should cover 

• Customers’ expectations using product xyz 
• Customers’ dissatisfaction with usage of product xyz 
• Customers’ criteria buying product xyz 
• Features which could fulfil customers’ expectations in a better way 
• Improvements the customers would prefer as next steps 

The next step is the preparation of a Kano questionnaire. Two questions belong to 
each feature. The first question of each pair is a functional question referring to the 
customer’s reaction on occurrence of a product feature. The dysfunctional second 
question refers to a possible non-occurrence of the same feature. There are five 
choices of response to each question. The questionnaire is the basis for the customer 
interviews. However, a good customer relationship is prerequisite to obtain valuable 
results. 

Finally, in the third step the combination of answers to the functional and 
dysfunctional pair of questions are compared and put into an evaluation table to 
classify the customer’s requirements. The results belonging to the various aspects are 
enlisted in a table enabling the allocation of the features to the 3 classes introduced 
above. 

Solution Provider
26%

Integrator
8%

Network 
Equipment 

Manufacturer
3%

Independent 
Software Vendor

36%

Application 
Developer

16%

Others
11%

 
Fig. 2. Distribution of various participants of this survey 

This survey took place within the project SOFTNET, part of the Bavarian research 
association for software engineering FORSOFT [9,10,11,12]. Within the cooperation 
of FORSOFT and Fujitsu Siemens Computers (FSC) the Kano method was used to 
assess the customer perception of RTP4CS. The FSC customers were selected at 
random. The results were anonymised by the University. The questionnaire consisted 
of 19 questions related to  

• General questions 
• Evaluation of usefulness of HA middleware 
• Further important features 
• Options on modularity 



76 J. Neises 

 

The questionnaire was filled in via Internet by the selected FSC customers. The 38 
participants of the survey consisted to 37% of Independent Software Vendors, to 26% 
of Solution Providers, to 16% of Application Developers, to 11% of others (Software 
Technology Vendors, Independent Consultants, Consulting), to 8% of Integrators and 
to 3% of Network Equipment Manufacturers (figure 2).  

With only a small number of companies responding to the poll the results of this 
survey has lead at least to a qualitative description of the requirements, which are 
important for the success of a high availability middleware. If a reliable confidence 
interval is required a much deeper survey with a larger number of participants is 
required. 

3   Results of the Survey 

3.1   Service Issues  

Since the customer value of HA middleware should be assessed, customers’ 
requirements on HA were a central issue within the survey. The implemented 
availability of the offered services is 98,46% on the average (figure 3). The 
availability required by the end-customer was estimated by the participants. In 

 

0

1

2

3

4

5

6

7

40* 90 95 98 99 99.79 99.8 99.9 99.99 99.997 100
 

Fig. 3. Poll on realized service availability. An average service availability of 98,46% has been 
implemented by 32 of the polled companies. The response of 40% realized service availability 
is neglected due to discrepancies 

this way, an average required service availability of 98.189 has been obtained (figure 
4). 32% of the interviewed companies have customers who require an availability of 
99.99% and more. Those companies are the main target group regarding HA 
middleware. These are mainly Independent Software Vendors, Solution Providers, 
Application Developers, and Integrators. The other 68% may give additional insight 
which features of HA middleware should be integrated into classical HA 
environments. 



Benefit Evaluation of High-Availability Middleware 77 

 

Fig. 4. Number of responses on required service availability. An average service availability of 
98.189% is required by the end-customer of 34 of the polled companies. The responses 5% and 
50% have been neglected in calculating the average due to discrepancies of realized and 
required service availability 

More than 50% of the applications are developed for business processes, about 5% 
for consumers, and approximately 40% for business processes and consumers. High 
availability is required for both types of services. Nevertheless, the main issue 
regarding high availability is ensuring business continuity. 

Fig. 5. Type of services 
 

 

0

1

2
3

4

5

6

7

8

5* 50* 70 90 95 98 99 99.8 99.9 99.9999.997 100

32 23 14 6 6 6 6 4 3

0% 20% 40% 60% 80% 100%

Web Services Messaging Services Mobility Services

Voice Real-Time Audio Audio on Demand

Telematics Video on Demand Real-time Video



78 J. Neises 

 

The services developed by the participating companies consist to 32% of Web 
Services, to 23% of Messaging Services, to 14% of Mobility Services, to 6% of 
Voice, Real-Time Audio, Audio on Demand and Telematics, to 4% of Video on 
Demand, and to 3% of Real-Time Video. 

A few remarks on the questionnaire participants are in order. The number of 
respondents was very good (20% of all distributed questionnaires2). Despite a pre-
selection to focus on availability aware participants, their expectations on the degree 
of availability varies widely. This means that the test sample becomes very small if 
only respondents with availability requirements beyond 99% are included in the 
analysis. The results of the analysis can therefore only be improved, if the survey can 
be repeated with more than thousand survey recipients.  

3.2   Development Issues 

The size of the development projects lies between one and more than 300 developers. 
No significant relation between project size and the required availability could be 
obtained. Hence, high availability issues have to be considered within the whole range 
of customers from SME to large enterprises.  

The development projects are characterized by various other criteria. Figure 6 
shows the core requirements which are relevant for most of the participating 
companies. Main criteria of the development projects are „Required scalability of 
service is high (number of users, data load)“, „Wide range of interfaces to other 
products, components, platform components“ as well as “We have implemented and 
deployed high availability applications before“. 

Scalability of service is the most relevant issue in service development throughout 
all participating groups. However, scalability is especially important among the 
groups “Solution Providers” and “Others”. Furthermore, “Wide range of interfaces to 
other products/components/platform components” is an important issue. This feature 
is especially emphasized by the “Integrator” group, whereas it is of less importance to 
the “Application Developer” group. Experience in developing HA applications is 
ranked third in the characterization of development projects. All of these issues are of 
special relevance to the group “Network Equipment Manufacturer”. 

Concerning the operating system, 47% of the interviewed persons use Windows, 
26% Solaris, 24% Linux und HP-UX, 21% AIX, 11% MVS and 5% Tru64. In the 
future, 11% of the users of Windows intend to change to Linux. Regarding future use, 
the scenario changes. Linux and Windows will have the same share of usage of 42%. 
Hence Windows will have to share its dominance with Linux. 

Due to the currently dominant market share of Solaris within the 
telecommunications market and the tremendous growth in Linux based applications, 
these two operating systems are the two most important UNIX based operating 
systems with a future market share of 66%. Therefore, any HA middleware should 
support them. 

 
2 Responses to the survey were motivated through prices for the fastest respondents and 

through a drawing between all others. 



Benefit Evaluation of High-Availability Middleware 79 

 

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00%

Required scalability of service is high (number of users, data load)

Wide range of interfaces to other products components, platform components

We haveimplemented and deployed high availability applications before

The srevice uses highly innovative functions

High complexity of the developed service

High complexity of the development process

We have expereince in high availability application development

Time-to-market for the project is short

Huge number of future users

Use of many exisiting components

The software development environment has been used before

High number of changes within the development process

 
Fig. 6. Core criteria of development projects 

3.3   Benefits of HA Middleware 

General questions have given insight into the activities of the participating companies 
and hence on the environment in which an HA middleware has to be positioned. 
Besides that, the benefits which can be provided by HA middleware have been polled. 
This part of the questionnaire was divided into three categories: 

• Product complexity 
• Quality criteria 
• Technical features 

This way, the various features can be classified and their rating can be determined. 
The evaluation of the benefits regarding product complexity indicates that the most 
benefits are expected by five aspects:  

 



80 J. Neises 

 

• “Avoid unauthorised access to data”,  
• “Connection to external systems”, 
• “Execute data replication”, 
• “Application programming interface” 
 

 

Fig. 7. Supported Operating Systems 

Hence modules providing defined methods of data access and provision of 
specified interfaces for connectivity and data replication are highly valued. Usually 
such modules are laborious in programming and testing, but do not provide core 
functionality required for an application. Provision of such modules and a specified 
API is the main value proposition of any HA middleware. Thus, especially 
standardization of an API which defines interfaces and features will be welcomed by 
companies developing applications with more than 99.99% availability. 

In addition to the benefits, which should be provided by HA middleware, quality 
criteria have been polled. The criteria  

• “no loss of data”, 
• “stability”, 
• “short response times” and  
• “support of continuous service availability”  

were rated with more than 75% by the participants. Companies, whose customers 
require an availability equal to or more than 99,99%, set a high value on the „support 
of <=2 minutes down-time per year“. Hence, when service availability is crucial, 
significantly more than five nines availability is an important quality criteria. 
Additionally, a combined offer of an HA middleware bundled either with a database 
and a protocol module or with a cluster framework is favoured. 
 
 



Benefit Evaluation of High-Availability Middleware 81 

 

The evaluation of technical criteria resulted in a high benefit for each criteria. The 
following criteria were used in the survey: 

• Fault-resilient process communications, 
• Transparent data replication, 
• Online software update, 
• Application programming interface, 
• Graphical user interface, 
• SNMP interface, 
• Online hardware upgrade. 
 

 

5)

1)2)3)
4)

5)

2)

4)

1)

3)

5 ) 2)
3 )

1)

4)

High customer
satisfaction

Dissatisfact ion
of the customer

Exp ectation s
exceeded

Expectat io ns
n ot fu lf illed

Excitement facto rs
• The softw are layer supports

a huge number of in ter faces
• Connection to external system s

can be realized in an easy way
• The softw are layer supports s calability

of the num ber of users or data load
• Support o f continuous h igh service

availab ili ty
• Modular softw are structure
• Existence of an application

program ming interface for  Java
6)

Basic factors
• The s upport o f security functions

to avoid user faults
• Maintenance services are supplied
• Consul tancy services are offered
• High Perform ance / Scalabil ity
• Training services are offered
• Support o f different management

standards (CORBA, SNM P)

6)

Performance factors
• Stability
• Portabi lity
• Existence of an application

programm ing inter face for  C
• Existence of homogenous

open API
• The support o f securi ty func tions to

avoid unauthorized access to  data

5)

1)2)3)
4)

5)

2)

4)

1)

3)

5 ) 2)
3 )

1)

4)

High customer
satisfaction

Dissatisfact ion
of the customer

Exp ectation s
exceeded

Expectat io ns
n ot fu lf illed

Excitement facto rs
• The softw are layer supports

a huge number of in ter faces
• Connection to external system s

can be realized in an easy way
• The softw are layer supports s calability

of the num ber of users or data load
• Support o f continuous h igh service

availab ili ty
• Modular softw are structure
• Existence of an application

program ming interface for  Java
6)

Basic factors
• The s upport o f security functions

to avoid user faults
• Maintenance services are supplied
• Consul tancy services are offered
• High Perform ance / Scalabil ity
• Training services are offered
• Support o f different management

standards (CORBA, SNM P)

6)

Performance factors
• Stability
• Portabi lity
• Existence of an application

programm ing inter face for  C
• Existence of homogenous

open API
• The support o f securi ty func tions to

avoid unauthorized access to  data

 

Fig. 8. Kano model of the group “Independent Software Vendor” 

 
Also service and support functionalities deliver a high value to the customer. This 

means that all offered technical functionalities got the interest of the customers. 
Detailed evaluation using a classification of requirements will lead to a more precise 
understanding of the functions which really lead to customer satisfaction. For this 
purpose, the Kano model has been used.  

4   Classification of Requirements 

Therefore, a special technique – the Kano model – was used in the survey. On this 
basis, a profile for each interviewed person was created. The evaluation  of  the  Kano  



82 J. Neises 

 

questions by averaging and comparison leads to a classification of features for each 
group of participants. Hence, for each type of company a typical Kano diagram can be 
obtained. 

For example, the Kano model of the group “Independent Software Vendors” 
(ISVs) is presented in figure 8. It shows that they expect functions such as „The 
support of security functions to avoid user faults“. Performance factors are for e.g. 
stability and the existence of an application programming interface for C. Criteria 
such as „The software layer supports a huge number of interfaces“ and „Support of 
continuous high service availability“ lead to high satisfaction.  

The expectations are evaluated using the Kano model according to the following 
two main customer groups: 

• Companies with customers having availability requirements up to 99.99%. 
These companies are expected to put emphasis on more general features 
which are delivered by an HA middleware, i.e. number of supported  
interfaces.  

• Service availability requirements of more than 99.99%: This group is the main 
target group of an HA middleware since the service availability targets are above 
five nines, i.e. service availability of less or equal 2 minutes per year (see above). 
Thus the participants belonging to these companies determine the features which 
are required at today’s market.  

The companies facing service availability requirements of more than 99.99% are 
the main target group of an HA middleware. Hence focus of the Kano evaluation lies 
on this group, since the participants belonging to these companies determine the 
features which are required in today’s market.  

The criteria „High performance / scalability“ is regarded as a performance factor 
by all solutions providers. On the other hand, 85% of the ISVs consider „High 
performance / scalability“ a basic factor. The residual 15% of ISVs see this as an 
excitement factor. “Application Developers” and “Others” consider this unanimously 
a basic factor. The “network equipment manufacturers” see „High performance / 
scalability“ as a clear performance factor (see table 1).  

It has become clearly visible that the different groups have differing  
expectations and set priorities for the criteria according to their needs. It can also be 
stated that there are some similarities between the different user groups in their 
valuation.  

The quality “The software layer supports a huge number of interfaces” is viewed 
consistently by some groups, but the view differs between the groups. “Application 
Developers” and “Others” see this as a basic factor while “Integrators” and “Network 
Equipment Manufacturers” value this a performance factor. “Solutions Providers” 
show internal differences: 25% see a huge number of interfaces as a basic factor 
respectively as a performance factor. The residual 50% consider this an excitement 
factor. Also, the “Independent Software Vendors” differ in their opinion. 50% 
consider “supports a huge number of interfaces” a basic factor, while 25% consider 
this a performance or an excitement factor. This means there are differences even 
within a “homogeneous” group.  



Benefit Evaluation of High-Availability Middleware 83 

 

Table 1. Kano model related to each group of participants 

Requirement classes per participating Group 

 ISV SP AD Int NEM Oth 

B X 
40%

X     

P       

Support of  continuous high 
service  availability. 

E X 
60%

 X  X  

B X 
85%

 X   X 

P  X   X  

High Performance / Scalability 

E X 
15%

     

B X 
88%

X 
33%

X 
75%

X  X 

P X 
12%

X 
66%

X 
25%

 X  

Stability 

E        
B X 

50%
X 

50%
  X X 

P X 
50%

X 
50%

 X   

Portability 

E   X    
B X 

33%
     

P       

Modular software structure 

E X 
66%

X X  X  

B X 
70%

X 
50%

X X X X 

P X 
10%

X 
50%

    

The software layer supports 
scalability of the number of users 
or data load. 

E X 
20%

     

B X 
50%

X 
25%

X   X 

P X 
25%

X 
25%

 X X  

The software layer supports a 
huge number of interfaces 

E X 
25%

X 
50%

    

B X 
70%

X 
75%

X 
66%

 X X 

P  X 
25%

X 
33%

   

ISV: 
Independent 
Software Vendor 
 
SP: 
Solution 
Provider 
 
AD: 
Application 
Developer  
 
Int : 
Integrator  
 
NEM: 
Network 
Equipment 
Manufacturer 
 
Oth: 
Others 
 
B : Basic Feature 
 
P: Performance 
Feature 
 
E : Excitement 
Feature 

Existence of homogenous open 
API 

E X 
30%

     
 

5   Conclusion 

A survey on the market requirements regarding HA middleware has been presented. 
HA issues are mainly driven by business continuity and a seamless operation of 
business processes. 



84 J. Neises 

 

Most of the participating companies require availability less than 99.99%. Thus 
they are only partially interested in HA middleware. These companies value the 
features 

• “Avoid unauthorised access to data”,  
• “Connection to external systems”, 
• “Application programming interface”. 

These features may be delivered as modules or should be integrated within a 
classical HA framework.  The integration improves its value proposition especially 
compared to free cluster frameworks which e.g. are available for Linux. 

The main target group of HA middleware are companies which need to fulfil 
service availability of more than 99.99%. These companies even require service 
availability of five nines and more. Those companies represent a share of 32% of all 
participants within this survey. Hence, the market seams to be ready for HA 
middleware today.  

If service availability is important, the companies require the features 

• Fault-resilient process communications, 
• Transparent data replication, 
• Online software update. 

These features are essential. Furthermore, an HA middleware will be evaluated 
regarding the features 

• Application programming interface, 
• Graphical user interface, 
• SNMP interface. 

Based on the survey results and further research on the performance of the 
competitors and the expectations of the consumers, it is possible to improve the 
fulfilment of customer needs. 

References 

1. Konrad Wiesneth, Stefan Arntzen: “IT-Technology for High Available Solutions in the 
Telco Environment  (RTP  - Reliant Telco  Platform).” Fujitsu  Siemens Computers.  
0-7803-6317-5/00/$10.00 (2000 IEEE).  

2. Manfred Reitenspieß: "Providing Highly Available Computer Systems for 
Telecommunications Applications". In: Annual Review of Communications. Vol. 50, 
1997. International Engineering Consortium. Chicago, 1997. ISBN: 0-933217-33-1 

3. Resilient Telco Platform, the optimal way to implement zero downtime application. White 
Paper. Fujitsu Siemens Computers. 2002. http://www.fujitsu-siemens.com/rl/products/ 
software/rtp4.html 

4. B. Kellerer, M. Reitenspiess: High-Availability Middleware - Design Principles, Quality 
Requirements and Test Methods. Services Integrated Design and Process Technology, 
IDPT-2003 



Benefit Evaluation of High-Availability Middleware 85 

 

5. Timo Jokiaho, Fred Herrmann, Dave Penkler, Louise Moser:  The Service Availability™ 
Forum Application Interface Specification (AIS 1.0). Service Availability Forum, 2003. 
http://www.saforum.org 

6. Francis Tam:  “On  the Development  of  an Open Standard  for Highly Available 
Telecommunication Infrastructure  Systems”.  Proceedings of the 28th Euromicro  
Conference, Milagros Fernandez Edt. Dortmund, Germany. September 2002. pp 347-350. 

7. Berger, Charles; Blauth, Robert; Boger, David; Bolster, Christopher; Burchill, Gary; 
DuMouchel, William; Pouliot, Fred; Richter, Reinhard; Rubinoff, Allan; Shen, Diane; 
Timko, Mike; Walden, David. "Kano’s Methods for Understanding Customer-defined 
Quality", In: Center for Quality Management Journal, Vol. 4 (Fall 1993), pp. 3 - 36.  

8. Matzler, K. u. H.H. Hinterhuber: How to make product development projects more 
successful by integrating Kano’s model of customer satisfaction into Quality Function 
Deployment, in: TECHNOVATION. The International Journal of Technology and 
Innovation Management, 1998, Vol 18, No. 1, pp. 25-38 

9. Wildemann, H.: Kostenmanagement Software -  Leitfaden zur Unterstützung einer 
marktorientierten Produkt- und Prozessgestaltung, 5. Aufl., München 2004 

10. Wildemann, H.: Qualitätsmanagement in der Softwareentwicklung- Leitfaden zur Analyse 
und Verbesserung von Produkt- und Prozessqualität, 4. Aufl., München 2003 

11. Wildemann, H.: Prozessgestaltung in der Softwareentwicklung- Leitfaden und Tools zur 
effizienten Entwicklungsprozessgestaltung in der Softwareentwicklung, 4. Aufl., München 
2003 

12. Wildemann, H.: Software-Projektmanagement - Leitfaden und Tools zur Planung und 
Abwicklung von Softwareentwicklungsprojekten, 4. Aufl., München 2003 

 



A Measurement Study of the Interplay
Between Application Level Restart and

Transport Protocol

Philipp Reinecke1, Aad van Moorsel2, and Katinka Wolter1

1 Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, 10099 Berlin, Germany

{preineck, wolter}@informatik.hu-berlin.de
2 University of Newcastle upon Tyne, School of Computing Science,

Newcastle upon Tyne, NE1 7RU, United Kingdom
aad.vanmoorsel@newcastle.ac.edu

Abstract. Restart is an application-level mechanism to speed up the
completion of tasks that are subject to failures or unpredictable delays.
In this paper we investigate if restart can be beneficial for Internet appli-
cations. For that reason we conduct and analyze a measurement study for
restart applied to HTTP GET over TCP. Since application-level restart
and TCP time-out mechanisms may interfere, we discuss in detail the
relation between restart and transport protocol. The analysis shows that
restart may especially be beneficial in the TCP set-up phase, in essence
tuning TCP time-out values for the application at hand. In addition,
we discuss the design of and experimentation with a proxy-based restart
tool that includes a statistical oracle module to automatically adapt and
optimize the restart time.

1 Introduction

Internet applications require effective ways to deal with unpredictable and highly
fluctuating response times. Recently, restart has been proposed as a technique
that may achieve that goal. Restart simply implies that an application retries an
attempt if no result returns before some time-out. The applications researched
range from Internet agent executions [4, 9] and web crawlers [9] to randomized
database queries [13] and randomized algorithms [1, 8]. In this paper we investi-
gate whether restart may work for straightforward HTTP GET, and how restart
mechanisms interact with and relate to transport protocols (particularly TCP).

It is especially important to understand the inter-workings of application
level restart with underlying transport protocols. An an example, consider a web
browser’s reload button, which most people routinely use to retry downloads that
(seem to) halt. In essence, pushing the reload button is itself a restart mechanism,
since it terminates the previous download and starts a new one [11]. Moreover, as
one can read in detail in [7], pushing the reload button corresponds to ‘overruling’
a time-out value within the TCP protocol (namely the Retransmission Timeout

M. Malek et al. (Eds.): ISAS 2004, LNCS 3335, pp. 86–100, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Measurement Study of Restart 87

(RTO)). Since the TCP protocol is core to the well-functioning of the Internet,
interfering with TCP may be a dangerous play. In the worst case, if restart
is used wide-spread by Internet users, overall performance may deteriorate, as
discussed in [9] and in a broader context in for instance [2, 6].

This paper provides a measurement study to investigate at what stages of
HTTP downloads one could apply restart. Restart decreases completion time of
a job if the completion time after restart is less than the remaining completion
time without restart. To find out whether this is the case, we first examine
if consecutive attempts are independent and identically distributed (i.i.d.). If
attempts are i.i.d, it is likely that they better respond to restarts than if they
are positively correlated. In addition, if attempts are i.i.d., we can compute the
restart time that minimizes the expected completion time. If the optimal restart
time is finite, we conclude that restart reduces the completion time of the job.

From the analysis in this paper we conclude that successive downloads to
different URLs are i.i.d, and that downloads to the same URL are i.i.d. in a
majority of the cases. The fact that successive completion times are largely
independent is a somewhat surprising and very Internet-specific fact, but sup-
ported by other measurement studies [7]. It also turns out that during all phases
of HTTP GET restart improves completion time. However, if we consider re-
tries to the same URL, restart is primarily beneficial because attempts fail
with a certain probability. If we separate out failures, the completion time
distribution of TCP connection set-up benefits from restart in only a small
minority of the cases. We therefore conclude that (when applied to a single
HTTP GET application) restart is especially useful to avoid very long connec-
tion set-up times that arise because the RTO time-out value is not optimal for
HTTP GET.

We note that the above conclusions apply to the case that only one ap-
plication executes restart. All other active Internet applications are assumed
to not change their behavior. We refer to [9] for a simulation study of the
case that multiple or all applications apply restart. Note also that the restart
approach is a black-box approach, as is our measurement study. We have no
data about the particulars of network or server status, and thus cannot draw
conclusions regarding the relation between completion times and server or net-
work load.

Applying restart would be greatly helped by a software module that can be
used for various applications, and flexibly adapts the restart time based on the
application at hand and the performance measured. To that end, we designed an
on-line oracle with algorithms that dynamically adapt and optimize the restart
time. The results we outlined above have all been obtained using this restart
tool.

The work in this paper is similar in purpose to the experiments in [14].
We subscribe to the conclusion from [14] that restart can substantially improve
connection set-up, especially for the tail of its completion time distribution. We
add to that a to-the-point discussion of the inter-working between TCP and
restart, computation of optimal restart times for our specific experiments, and
the design of an adaptive restart software tool.



88 P. Reinecke, A. van Moorsel, and K. Wolter

2 Experiment Design

In our experiment we gather a large set of data reflecting performance of an
application that uses HTTP GET, the most obvious example being the web
browser. For each individual web page, a three-stage process is to be considered:
(1) IP address resolving, (2) connection establishment and downloading of data
comprising the page, and (3) page rendering by the browser. In our experiment
we focus on step (2), arguing that the first step usually happens only once for
each host, and the time taken by the third can in most cases be neglected.

Within step (2), we concentrate on three important aspects:

1. TCP connection set-up time (hereafter referred to as CST).
2. Download time of a single object in a web page, e.g. a picture (object down-

load time, ODT).
3. Time from beginning to end of a page download (total download time, TDT).

Note that the total download time includes connection set-up as well as a
number of object downloads. Each object download may include a TCP connec-
tion set-up. If HTTP/1.1 is being used, downloads from the same IP address
can use the same TCP connection, thus alleviating the need for multiple TCP
connection set-up phases.

Our experiments consisted of two stages, where the point of the first one
was an investigation into the nature of time data encountered downloading
web pages, while the second aimed at examining a possible improvement do-
ing restarts.

2.1 First Stage

We carried out the experiments of the first stage in two phases, first download-
ing a large number of pages and afterwards concentrating on a few interesting
examples.

Host List Construction. To obtain a large number of samples for the first
step we built a list of web page URLs to be downloaded. We repeatedly fed
entries of a word list into the Google search engine (http://www.google.com),
requesting to be shown the first 100 hits in the reply. From this page, all linked
URLs were extracted and sorted in lexicographic order. We then isolated the
host name components and removed duplicate entries. As far as possible, we
also checked by informal means that the selection of hosts is not limited to any
geographical area or part of the Internet. Altogether we hope to have created a
more or less random set of URLs with which we conducted our experiment.

We used three machines running Linux as clients. Two of these were con-
nected to the Internet by 768/128 kbit ADSL, the third one by 100Mbit Ethernet.
Iterating through the list of hosts a client downloads each server’s index page ex-
actly once. This yields three sets of data, with characteristics as in Table 1. Note
that the number of objects listed under ODT is larger than the number of TCP
connections listed under CST, since HTTP/1.1 allows that TCP connections can
be reused for multiple objects from the same IP address.



A Measurement Study of Restart 89

Table 1. Constructed data sets of phase 1

Data set # of CST �= 0 # of ODT samples # of TDT samples
I 234848 799265 56117
II 231793 794324 55397
III 232525 795986 55558

As the second phase we then selected 309 URLs to be examined further. These
URLs were chosen based on the findings of the first run; we selected those that (1)
consisted of a minimum of 50 objects and (2) provided several connection setups
(i.e., probably did not use HTTP/1.1). These criteria were based on our decision
to concentrate on CSTs. Hence, to draw reliable conclusions, we needed a large
number of CST samples. URLs from this list were then repeatedly downloaded
in batches of 25, each URL 10 times in a row, and the whole batch 10 times
as well. Entries that failed as well as those that had already provided at least
1000 CSTs were removed from subsequent iterations in order to speed up the
experiment. This phase was run on one Linux system using ADSL.

2.2 Second Stage

In the second stage we compared performance of connections through our proxy
with and without doing restarts at connection setup. Here we used the same
method as described in the second step above, but employing the proxy in-
between. This stage was conducted in two ways, (1) using a list of 17 URLs
that exhibited a relatively large number of CSTs above 3 seconds and (2) using
25 URLs without CSTs in this range, but with a high standard deviation of
samples, both based on observations in the second phase of the first stage.

2.3 Tools Used

For all our experiments we relied on a modified version of the GNU wget utility.
We modified the program’s usual output to display time stamps consisting of
seconds and microseconds (as given by the gettimeofday() C library function),
at the start and end of (1) connection set-up, (2) download of a page component
(possibly including more than one connection set-up), and (3) download of a
whole page. To obtain such detailed data, we ran wget with the ‘-p’ option,
thereby downloading all elements necessary to render the page, i.e., requesting
the HTML code as well as any objects referred to.

3 Analysis for Multiple URLs

For some Internet applications restart implies connecting with a different URL
at each attempt. This can for instance be the case with web crawlers [9] or
certain agent applications that find quotes from e-commerce web sites. For such



90 P. Reinecke, A. van Moorsel, and K. Wolter

Fig. 1. All sampled connection set-up times

applications, one needs to analyze data for varying URLs. We focus mainly on
data set II of Table 1, but the results for the other data sets are similar. Fig. 1
shows the time for connection set-up of the close to 240 thousand samples of
data set II.1 The plot nicely visualizes the role of the retransmission time-out
in TCP connection set-up. The RTO is used to trigger a retransmission of a
connection attempt if no acknowledgment has been received in time. In Fig. 1
one recognizes the RTO values through the ‘stripes’ formed a little above RTO
values: first after 3 seconds, upon the second trial after 9 seconds, then 21, 45
and 93 seconds, exactly according to specification [7].

Importantly, almost all connection set-up times are less than 1.0 seconds.
That is, either the connection set-up succeeds quickly, or one waits for the RTO
timer to trigger a new attempt. Very rarely (roughly 1 in 5000 attempts) does a
connection get established after one second, but before the next RTO time-out.
In addition, out of the roughly 230 000 observations, about 1200 ‘fail’ (i.e. they
take longer than 3.0), thus leading to retries. Hence, the CST distribution is
with probability 0.995 distributed as given by the samples, and with probability
0.005 it fails. If we compute the optimal restart time for this data set (see
Appendix A and [11]), we obtain that restarts should be done every 0.43 seconds.
Such computation, however, assumes independence of consecutive tries, a fact
we investigate now using the statistical package R [12].

1 For practical reasons we plot in several figures throughout this paper only a subset
of the thousands of samples. In none of these cases this changes the visual experience
when interpreting the figures.



A Measurement Study of Restart 91

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series  CST

0 10 20 30 40 50

0.
00

0.
01

0.
02

0.
03

0.
04

Lag

P
ar

tia
l A

C
F

Series  CST

Fig. 2. Lag versus autocorrelation and partial autocorrelation function for CSTs to
multiple URLs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 7500 15000 22500 30000 37500 42500 50000 56000

co
nn

ec
tio

n 
se

tu
p 

tim
e 

(c
st

)

first observation per URL

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series  firstIP

Fig. 3. Connection set-up times for the first connection per URL download, and its
autocorrelation function over the lag

We compute the autocorrelation function and, since it provides better visual
evidence, the partial autocorrelation function (see Appendix B for statistical
background information), as shown in Fig. 2. Both figures show that the series
exhibits correlation, since the values of the autocorrelation function are not close
to zero for lower lags.

We believe that part of the explanation of the correlation between consecutive
connection set ups in data set II is the clustering effect introduced by the different
URLs: URLs are accessed sequentially and connections to the same URL tend
to take times similar to each other. From how it is assumed to occur one expects
it to disappear if for each download in data set II only the first CST is selected.
Fig. 3 shows the results (roughly 56000 samples). We see from Fig. 3 on the left
side that the first set-up time to each server has similar characteristics as in the
overall sampling of connection set-ups in Fig. 1. Even though the pattern in the
CST is the same for all sampled CSTs as for the first connection set-up to a
location, the dependence characteristics are not. The autocorrelation, shown in
Fig. 3 on the right side, is very close to zero. Note the outlier at lag 37, which we



92 P. Reinecke, A. van Moorsel, and K. Wolter

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10000 20000 30000 40000 50000

to
ta

l d
ow

nl
oa

d 
tim

e 
(t

dt
)

observations

Histogram of TDT

TDT

D
en

si
ty

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Fig. 4. Scatter plot and histogram of the total download time

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series  RDT

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F
Series  TDT

Fig. 5. Autocorrelation function for the object download time and the total download
time

cannot explain – each of the other two data sets also exhibits one such outlier.
In the first data set it is for lag 2, in the third for lag 28. In general, however, we
conclude that this data is uncorrelated and hence is more likely to be amenable
to restart.

The connection set-up is only the first step in the download of a page. The
final objective of restarting a download is to receive the whole page faster.
Therefore we are interested in the total download times. In this case, the re-
sults we obtain show fewer obvious patterns. This is because the file sizes vary
greatly, and also the number of objects belonging to one page is quite diverse.
To give a picture of the total download times we sampled, Fig. 4 shows TDTs
for our data set II. In addition, the right side of Fig. 4 shows the probabil-
ity density of the data in the left plot. Note that both figures display samples
with a download time of at most 50 seconds, thus omitting the 726 largest
values. It is interesting to note that if one applies the expressions from Ap-
pendix A to this data, one finds that the optimal restart time is about 8
seconds.



A Measurement Study of Restart 93

Of course, it is not at all clear if the assumptions under which the optimal
restart time can be computed apply to the data in Fig. 4, and we therefore study
the correlation of consecutive downloads. From Fig. 5 we see that there is quite
strong autocorrelation in the object download time, probably since many objects
belong to the same index page (up to 200 objects on one page). However, the
total download times of consecutive attempts seems highly uncorrelated.

4 Analysis of Individual URLs

Until now we discussed the situation of multiple URLs. Restart resulting in
HTTP GET actions to rather randomly selected URLs may be useful for some
Internet applications, but, obviously, for the most common, a restart would use
the same URL as the previous one. This is certainly true for web browsing.
Therefore, we must do the statistical analysis for consecutive requests to the
same URL, which we did in the second phase of this stage.

Drawing conclusions for the correlation of individual URLs is much more
complicated than that for all URLs together. If we consider connection set-up
time, about two-thirds of the URLs can be said to be uncorrelated. Of this
some exhibit no correlation at all. The majority shows some lags with positive
correlation, but we do not think this indicates serious dependence, as we discuss
below for one typical example. The correlation exhibited by about one-third of
the URLs can be explained in various ways. For some URLs something drastically
changed during the experiment, resulting in a shift up or down of all CST values
– in such cases correlation is extremely high (this accounts for about one third
of correlated URLs). We also identified URLs for which connection set-up times
show multi-modality. That is, CSTs are roughly equal to one of several values,
possibly because of servers in a server pool with different speed. Finally, we
noticed some URLs with periodicity in the results.

As an example, we discuss a typical URL, namely http://www.jp.arm.com/.
We refer to this URL as ‘URL 29’. Fig. 6 shows the CSTs for URL 29 as well
as the autocorrelation function. Note that the confidence interval here is much
larger than for earlier shown data, because the number of observations is com-
paratively low. We see from Fig. 6 that consecutive CSTs to the same URL are
surprisingly independent.

Fig. 7 shows the object download times and the total download times for
requests for URL 29. The autocorrelation function for ODT is similar to that
for CST in Fig. 6. We can compute for URL 29 what the optimal restart times
are based on the data for CST, ODT and TDT. We find that for connection set
up, one would restart every 0.5 seconds, for objects one would also restart every
0.5 seconds, and for total download of URL 29 one would never restart.

If we consider CSTs, it turns out that the dominant reason for which one
would do restart is when connection set up fails. For all our URLs an optimal
restart time with a value of less than three seconds exists, if the CST includes
RTO expirations. In the examples for which the RTO timer never expires, restart
pays off far less frequently. In particular, for only about 10 percent of URLs



94 P. Reinecke, A. van Moorsel, and K. Wolter

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  200  400  600  800  1000  1200

co
nn

ec
tio

n 
se

tu
p 

tim
e 

(c
st

)

observations

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series  CST

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series  CST

Fig. 6. Connection set-up times and autocorrelation function for URL 29

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  200  400  600  800  1000  1200

ob
je

ct
 d

ow
nl

oa
d 

tim
e 

(o
dt

)

observations

 20

 30

 40

 50

 60

 70

 80

 90

 0  5  10  15  20  25  30  35

to
ta

l d
ow

nl
oa

d 
tim

e 
(t

dt
)

observations

Fig. 7. Object download time and total download time for URL 29

without major correlation, restart is beneficial if no RTO timers expire. We
note, however, that these results are very sensitive to the tail of the completion
time distribution, and are therefore hard to estimate accurately.

5 On-line Optimization of Restart Times

To determine if restart indeed improves the set up and/or download times for
HTTP GET, we need to implement restart and apply it to the URLs of our test
set. Therefore, we designed and implemented a client-side HTTP-based proxy
capable of dynamically adapting restart times.

5.1 Proxy Design

As depicted in Fig. 8, the restart proxy consists of the core proxy part and a
general sample data collection/computation part, which we call the Timeout
Oracle. When the proxy, after accepting a request from the client, connects to
the appointed server, it measures the time elapsed in the set-up of this TCP
connection. Every connection set-up duration is limited by a timeout. In case
an attempt takes longer than the timeout, it is aborted and retried, possibly



A Measurement Study of Restart 95

Setup
Connection

Request

sa
m

pl
es

Web client

O
pt

im
al

 ti
m

eo
ut

R
eq

ue
st

P
ar

se
r

D
at

a 
tr

an
sf

er

C
S

T

Web server

T
im

er

TimeoutOracle

Proxy

Fig. 8. Proxy design

with another timeout. This may repeat up to ten times, after which the proxy
gives up.

The CST samples obtained by measuring successful as well as timed-out
connection attempts are fed into the Oracle, which in turn provides a new re-
commendation on an optimal timeout for later connection set-up attempts. It
does this based on the sample-based estimators given in Appendix A, which use
results from [10, 11]. The optimization target is the first moment of connection
set up time, and in the formulas we assume unlimited number of retries (we
could make this more precise for the limit of 10 retries, but as some results in
[11] indicate, one would not expect this to make an important difference). After
connection set-up, the proxy simply forwards HTTP requests/replies between
server and client. For the moment, we do not implement restart during data
transfer, but we hope to do this in the future.

Parameters of the Oracle. The Timeout Oracle implements the on-line
algorithm as outlined in the appendix. In principle, the Timeout Oracle can be
used by any application, thus providing a general optimal timeout computation
facility to applications. Its parameters are the maximal timeout (set to 24,000
ms in our experiment), the number of buckets (H = 100, see Appendix A) and
the penalty, i.e., the time needed for a restart (somewhat arbitrarily chosen to
be c = 100ms). When computing a new timeout value, the Oracle always uses
all samples collected so far. It can be argued that this could potentially lead to
slower adaptation of optimal timeout to current samples after a high number of
samples have been entered. Tuning the restart time needs to be studied further
but is not the topic of this paper.

We tested the usefulness of the proxy in the second stage of our experiments.
Therein, we use CST, ODT and TDT as performance metrics: ODT and TDT
are measured through wget as before, but CST samples are now taken from the
proxy. In the case of restarts, all consecutive CSTs during the establishment of
a TCP connection are summed to reflect the actually elapsed time.



96 P. Reinecke, A. van Moorsel, and K. Wolter

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

sa
m

pl
e 

de
ns

ity

ODT in ms

without proxy
with proxy

Fig. 9. Comparison of ODT samples with and without the proxy

Before discussing restart for connection set-ups, we look at the overhead the
proxy introduces when downloading web pages. The proxy requires setting up
an additional connection to the proxy and the proxy also uses CPU cycles to
compute the optimal restart time and to handle the request. Fig. 9 gives the
overhead for ODT, and the same can be demonstrated for TDT. (Note that the
values on the y-axis of Fig. 9 are an artifact of the way we plotted the den-
sities, and have no physical interpretation.) One sees that the overhead is not
that drastic, so we hope that our experiments with the proxy will be represen-
tative for other future implementations of restart, for instance within the web
browser.

5.2 Results

Table 2 shows results for the adaptive restart proxy, for CSTs of 16 URLs (URL
8 is omitted in the table since we no longer could connect to it halfway through
our experiments). For each URL we have an equal number of samples with and
without restart (about 1000 samples for each URL). We see that restart gives
clear advantages for the tail of the connection set-up time distribution. In the
two middle columns there are many more set-up times of more than 3 seconds
without restart than with restart (average of 4.3 per thousand CSTs and 0.6
per thousand CSTs, respectively). In other words, the TCP RTO timer is set
too high (at 3 seconds) to be efficient, and our restart mechanism improves
considerably on the results with RTO. If we consider the mean set-up time,
the difference is much less clear. Interesting are the URLs without RTO time-
outs (URLs 2, 3, 7, 12, 16 and 17). We see that for these URLs set-up times with



A Measurement Study of Restart 97

Table 2. Restart results for CST

Mean CST Mean CST # > 3 sec # > 3 sec
URL w/o restart w. restart w/o restart w. restarts # RTOs # Restarts
1 353 320 11 0 11 1
2 233 254 0 0 0 1
3 246 242 0 0 0 1
4 244 232 3 0 3 0
5 376 370 2 0 2 1
6 552 513 16 1 16 5
7 291 290 0 0 0 0
9 729 109 7 1 7 16
10 115 104 9 3 9 11
11 200 197 1 0 1 1
12 193 194 0 0 0 1
13 116 113 9 1 9 19
14 107 115 6 1 6 19
15 113 107 5 0 5 6
16 88 117 0 2 0 12
17 424 438 0 0 0 0
average 274 232 4.3 0.6 4.3 5.9

and without restart are roughly equal. The most noticeable exception is URL 16,
for which no RTO expires, but for which restart triggers reconnection 12 times.
It seems that for this example, the restart time was set too tight, because the
average CST with restart is much higher than the average CST without restart.

For URL 9, Table 2 shows that the mean CST without restart is far worse
than with restart. This happens when the TCP RTO timer expires several
times in a row, increasing to 9, 21, 45 or 93 seconds, subsequently. Our restart
mechanism does not increase so drastically (the algorithm discussed in Ap-
pendix A does in fact lead to an increase of the restart time, but at a far
slower pace than the RTO increase). Of course, we have to realize that in such
cases the network might have been down temporarily, also rendering quicker
restarts unsuccessful (or even harmful if overload conditions caused the net-
work problems [9]). Such effects can not be traced back using our data sets.
Note furthermore that our data comes from the case that only a single appli-
cation applies restart, leaving the rest of the Internet unchanged. In [9] the
authors analyze network effects if multiple agents apply restart simultaneously.
Moreover, using our on-line adaptive algorithm, there is more analysis to be
done to assure the stability of such a control algorithm. This is all for future
work.

In conclusion we see that our experiments indicate that the average connec-
tion set-up time changes little with or without restart, but that very long TCP
connection set-up times can be avoided using restart.



98 P. Reinecke, A. van Moorsel, and K. Wolter

References

1. H. Alt, L. Guibas, K. Mehlhorn, R. Karp and A. Wigderson, A Method for Ob-
taining Randomized Algorithms with Small Tail Probabilities, Algorithmica, Vol.
16, Nr. 4/5, pp. 543–547, 1996.

2. D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker, “Dynamic Behavior of
Slowly-Responsive Congestion Control Algorithms,” in Proceedings ACM SIG-
COMM 2001, San Diego, CA, USA, Aug. 2001.

3. P. Brockwell and R. Davis, Time Series: Theory and Methods, 2nd Edition,
Springer Verlag, New York, 1991.

4. P. Chalasani, S. Jha, O. Shehory and K. Sycara, “Query Restart Strategies for
Web Agents,” in Proceedings of Agents98, AAAI Press, 1998.

5. W. Cochran, Sampling Techniques, John Wiley, New York, 1977.
6. S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion Control in the

Internet,” in IEEE/ACM Transactions on Networking, Vol. 7, No. 4, pp. 458–472,
1999.

7. B. Krishnamurthy and J. Rexford, Web Protocols and Practice, Addison Wesley,
2001.

8. M. Luby, A. Sinclair and D. Zuckerman, “Optimal Speedup of Las Vegas Algo-
rithms,” Israel Symposium on Theory of Computing Systems, pp. 128–133, 1993.

9. S. M. Maurer and B. A. Huberman, “Restart strategies and Internet congestion,”
in Journal of Economic Dynamics and Control, vol. 25, pp. 641–654, 2001.

10. A. van Moorsel and K. Wolter, “Optimization of Failure Detection Retry Times,”
in Performability workshop, Monticello, IL, Oct. 2003.

11. A. P. A. van Moorsel, K. Wolter, “Analysis and Algorithms for Restart,” in Pro-
ceedings of Quantitative Evaluation of Systems, Twente, The Netherlands, pp. 195–
204, Sep. 27–30, 2004.

12. R Development Core Team, R: A Language and Environment for Statistical Com-
puting, R Foundation for Statistical Computing, Vienna, Austria, http://www.
r-project.org, 2003.

13. Y. Ruan, E. Horvitz and H. Kautz, “Restart Policies with Dependence among
Runs: A Dynamic Programming Approach,” in Proceedings of the Eight Interna-
tional Conference on Principles and Practice of Constraint Programming, Ithaca,
NY, Sept. 2002.

14. M. Schroeder and L. Buro, “Does the Restart Method Work? Preliminary Results
on Efficiency Improvements for Interactions of Web-Agents,” in T. Wagner and
O. Rana, editors, Proceedings of the Workshop on Infrastructure for Agents, MAS,
and Scalable MAS at the Conference Autonomous Agents 2001, Springer Verlag,
Montreal, Canada, 2001.

Appendix A. On-line Determination of Restart Time

Our on-line algorithms attempt to minimize the expected time it takes to set up
a TCP connection, by using restart. In terms of job completion time, as used in
[11], the ‘job’ thus corresponds to connection set up. If f(t) is the probability
density function for the job completion time, then to minimize the expected job
completion time Eτ , with restart every τ time units (for as long as a job does
not complete), we have the following result [11]:



A Measurement Study of Restart 99

Eτ =
M(τ)
F (τ)

+
1 − F (τ)

F (τ)
(τ + c), (1)

where F denotes the probability distribution for the time a job can take, that is,

F (τ) =
∫ τ

0
f(t)dt, (2)

and M denotes the first partial moment of download times:

M(τ) =
∫ τ

0
tf(t)dt. (3)

Finally, c denotes the time it takes to execute a restart.
In our scalable on-line algorithm, we assume we collect data for a system with

some restart time τ set beforehand, out of our control. Based on the collected
data, we adapt τ to improve the expectation of the completion time. Of course,
if one continues collecting data, the amount of data eventually gets prohibitively
large. We therefore keep track of results per ‘bucket,’ that is, we divide the
observations over H buckets, each of size h = τ/H, and only keep track of
the average return time Mi and number of samples Ni within each interval
(i = 1, 2, . . . , H). In the i-th bucket, we thus consider the observations with
values in the interval [(i − 1) · h, i · h). If we label the observations ti,1 . . . ti,Ni

,
Mi is estimated by:

M̂i =
1
Ni

Ni∑
j=1

ti,j . (4)

We also keep count of Nτ , the total number of observations that take at
least τ time units. (Note that for these observations a restarts is initiated.) For
candidate retry time τi = i · h, we then obtain the following estimators for (2)
and (3):

F̂ (τi) =
∑i

k=1 Nk∑H
k=1 Nk + Nτ

, (5)

M̂(τi) =
∑i

k=1 Nk · M̂k∑i
k=1 Nk

. (6)

Ultimately, we thus estimate the expected diagnosis time Eτi
by the asymp-

totically unbiased ratio estimator [5]

Êτi
=

M̂(τi)
F̂ (τi)

+
1 − F̂ (τi)

F̂ (τi)
· (τi + c). (7)

The optimal restart time is then obtained by selecting the value of τi =
i · h, i = 1, 2, . . . , H, which minimizes (7).



100 P. Reinecke, A. van Moorsel, and K. Wolter

Appendix B. Used Statistics

Since our data did not suggest noteworthy trends or seasonal indications (with
exception of the clustering effect discussed in Section 3), we may assume we
deal with (weakly) stationary time series, see Paragraph 1.4 of [3]. Stationar-
ity implies that for a time series {Xi, i ∈ ℵ}, the second moment of all Xi is
finite, the mean value identical for all Xi, and the correlation between Xi and
Xi+k is independent of i (see Definition 1.3.2 in [3] for a mathematically precise
definition.)

The figures in this paper plot the ‘ACF’ or auto-correlation function, as
well as the ‘PACF’ or partial auto-correlation function. These can directly be
obtained using the statistical package ‘R’ [12], using standard sample-based es-
timators corresponding to the following definitions of (partial) autocorrelation.
Auto-correlation Corr(Xn, Xn+k) of lag k of a stationary time series {Xi, i ∈ ℵ}
is defined as:

Corr(k) =
Cov(Xn, Xn+k)
Cov(Xn, Xn)

=
E[XnXn+k] − E[Xn]E[Xn+k]

V ar[Xn]
, (8)

where, as usual, E is used to denote the expectation of a random variable,
while V ar denotes variance. Partial autocorrelation can be said to adjust the
autocorrelation with lag k for the intervening observations (that is, for those
with lesser lag). Compared to the ACF, the PACF indicates if auto-correlation
can be explained by the information in the intermediate variables. For the precise
definition of PACF, we refer to Definition 3.4.1 of [3]. For consecutive random
variables in a time series to be independent, the autocorrelation function must be
zero. For the sample-based computation, this translates into the autocorrelation
function to be within a confidence interval around zero, as depicted in the various
graphs in this paper.



Service-Level Management of
Adaptive Distributed Network Applications

K. Ravindran1 and Xiliang Liu2

1 City College of CUNY and Graduate Center, Department of Computer Science,
Convent Avenue at 138th Street, New York, NY 10031, USA

ravi@cs.ccny.cuny.edu
2 CUNY Graduate Center, Computer Science,
365 Fifth Avenue, New York, NY 10016, USA

xliu@gc.cuny.edu

Abstract. The paper is on generic service-level management tools that
enable the reconfiguration of a distributed network application when-
ever there are resource-level changes or failures in the underlying net-
work sub-systems. A network service is provided to client applications
through a protocol module, with the latter exercising network infras-
tructure resources in a manner to meet the client requirements. Client
requests for a network service instantiate the underlying protocol mod-
ule with parameters specified at the service interface level, along with
a prescription of critical properties to be enforced therein. At run-time,
a management module may automatically monitor the service compli-
ance to client-prescribed requirements, and notify the client whenever a
service quality degradation is detected. The paper proposes a ‘function’-
based model of service provisioning to realize our management approach.
In this model, a service prescription conforms to generic interface tem-
plates based on an enumeration of the service attributes visible to clients,
and how these attributes logically relate to one another in composing a
client-level quality expectation. Our management model is independent
of the specifics of problem-domain, which simplifies the development of
distributed adaptive applications through a ‘software reuse’ of the man-
agement module. The paper presents the case study of an application:
CDN, to demonstrate the usefulness of our model.

1 Introduction

Network-centric distributed applications are evolving in the form of requiring far
diverse and widely varying service capabilities from the network infrastructure
(such as electronic banking, tele-medicine, and tele-shopping). Network infras-
tructures are also evolving to augment their capabilities in terms of diverse
criteria and to offer these capabilities in a form usable by applications [1]. To
balance application evolutions on one hand and infrastructure evolutions on the
other without constraining either, comprehensive network management tools and
paradigms are required that can allow applications to interwork with network

M. Malek et al. (Eds.): ISAS 2004, LNCS 3335, pp. 101–117, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



102 K. Ravindran and X. Liu

infrastructures in a flexible and extensible manner. A part of these challenges
arises due to infrastructure outages and/or changes that may occur dynamically
during an application execution (e.g., increase in the access latency on a web
page due to the crash of a ‘content distribution’ agent node). Our paper identi-
fies a suitable network service model to support the development of applications
that can adapt to the capabilities offered by network infrastructures.

The current management standards, TINA and DCOM [2, 3], advocate the
partitioning of a distributed network application into two types of entities: ser-
vice provider (SP) and service user (or client). The SP maintains a repertoire
of protocol mechanisms that are capable of offering network services to clients.
For service delivery, a protocol mechanism exercises the infrastructure resource
components placed at different sites of the network. A client application con-
trols the extent to which network infrastructure resources are exercised, based
on its service-level requirements. Our work on network service models purports
to ‘liaison’ these two aspects of network application development. See Figure 1.

S
F

O
R

SE
R

V
IC

E
P

R
O

V
ID

E
R

o

o

x

x

x

x

o
Service parameterspar :

x
infrastructure

‘service-aware’  Applications

x
o

x

service-interface level

usage

o

(resources) Network

visible behavior

Resource

resources

(clientele)

PROTOCOL  MECHANISMS
P(S) par

exercise
to meet

S

(S,par)

P(S)

complete
(S)

invoke

TIME

infrastructure

Client Service

resources

Fig. 1. Layers of functions in a service provisioning system

A protocol P (S) exercises the infrastructure resources in delivering a service S
to clientele. The internal state maintained by P (S), which abstracts the resource
usage, may be mapped onto service-level parameters visible to clients. A client
may determine the feasible service behavior therefrom, to compare with the
service obligations expected of S. Any deviation in the actual service behavior
from the expectations is symptomatic of resource-level failures (e.g., excessive
packet loss seen by end-users indicates a heavy bandwidth congestion along the
network path). Thus, behavioral monitoring of network services is a necessary
element of client-level reconfiguration mechanisms.

From a service-level programming standpoint, the monitoring activity may be
structured as generic functions that can be instantiated with problem-specific



Service-Level Management of Adaptive Distributed Network Applications 103

parameters. For instance, how often the state variables characterizing a ser-
vice behavior are sampled is application-dependent, while the distributed algo-
rithm to sample the state at various network nodes can itself be generic. Our
model of network services allows developing the monitor and control function-
alities in a service-neutral manner, making them usable across a wide range
of applications. The service-neutrality of our model arises from its ‘functional’
orientation, where a service prescription conforms to a generic template based
on enumeration of service attributes and how they logically relate to one an-
other. A management module interworks with the service and client modules
through a generic schema, for monitoring service compliance to client-prescribed
critical properties. The monitor is realizable by a set of software agents that
can be implanted in the target client and service modules, and be projected
onto the problem-specific parameter space to facilitate their interworking with
the target modules. A re-use of the management agents across different appli-
cations may significantly simplify the development of distributed networking
software.

In the paper, service-level critical properties may be prescribed in the form of
logical relations on the service attributes exported through a client-visible inter-
face. Clients may instantiate the attributes of a network service with parameters,
along with a prescription of what service property should hold. This prescription
in turn allows the monitoring of service compliance to client-level requirements
by the management module at run-time. Dynamic reconfiguration of clients may
be triggered by notifications of service quality degradations from the manage-
ment module. The paper describes case studies of network applications to bring
out the usefulness of our management model.

The paper is organized as follows. Section 2 provides a management-oriented
view of network service offerings. Section 3 describes our application-oriented
function-based model of network management. Section 4 positions our model in
the light of existing management paradigms. Section 5 provides the case study
of a network application: ’content distribution network’ (CDN), in terms of our
model. Section 6 concludes the paper.

2 Management-Oriented View of Service Offerings

The functions of a network sub-system may be made available to client applica-
tions through an abstract service interface that prescribes a set of well-defined
service features and capabilities, i.e., service attributes. A client may exercise
one or more features to obtain a desired quality of service delivery. For example,
the ‘accuracy level’ of time information is a feature of Network Time Service
(NTS) exercisable by a client-prescribed ‘minimum accuracy’ parameter — say,
to time-stamp banking transactions. The protocol employed at network infras-
tructure level to provide a given service (e.g., ‘sync’ message exchanges between
NTS nodes) is itself hidden from clients.



104 K. Ravindran and X. Liu

2.1 Service Behaviors Visible to Clients

How a service ‘quality’ as seen by clients is affected by the changes in infrastruc-
ture resources constitutes a service behavior. Given a client-prescribed quality
expected of a service S, different protocol modules P (S), P ′(S), · · · may exhibit
distinct behavioral profiles, i.e., offer different levels of service S for a given
amount of infrastructure resources.

From a client’s perspective, two services are identical if their externally visible
behaviors for a given a set of parameters are the same. As example, consider a
‘circuit switched’ service offered in POTS-style telephone switching networks [5].
A management-oriented view of ‘circuit switched’ service is one of a ‘network
link’ that offers transfer delay with variance ≈ 0 around a mean d for each
data unit (where d = size of data unit

link bandwidth ). This view, while subsuming traditional
POTS-style implementations that dedicates a ‘copper wire’ between end-points
to realize voice ‘links’ (with implicit guarantees of bandwidth), also encompasses
‘packet switching’ implementations that exhibit a similar delay behavior — at
least over an operating range of interest. In general, service differentiation may
be in terms of measurable parameters of externally visible behaviors.

Changes in the parameters of a service offering depict macroscopic behavior
indices (or symptoms) at the service interface, reflected onto from infrastructure
changes. For example, a symptom of network congestion is the end-to-end data
transfer delay over the network exceeding a limit [6, 7]. In general, a service
behavior can be dynamic in nature, i.e., service features can change in the midst
of service provisioning due to changes in the underlying infrastructure elements.

2.2 Programmability of Service Offerings

The service attributes exported by the SP may pertain to performance, availabil-
ity, functionality, and the like. From a client standpoint, the quality expectation
may be some combination of these attributes. With such service-aware clients,
any degradation in the level of service offering should be within the tolerance
limits of attributes prescribed by clients.

The client invokes a network service S by prescribing a set of parameters. The
SP instantiates a network protocol P (S) by mapping the client prescriptions to
protocol-level parameters [8]. The latter allow exercising the infrastructure re-
sources by the functions that compose of P (S). In general, a higher level of
service obligation to clients requires an increased usage of resources; likewise,
a reduced resource availability lowers the service quality. The parameterizable
execution of P (S) allows a macroscopic control of infrastructure resource us-
age to meet the client-prescribed service parameters. In the NTS example, the
client-specified resolution and accuracy levels of time information influence the
frequency of ‘time sync’ message exchanges between NTS nodes: higher accu-
racy requiring more frequent messages. The relationship between resource usage
and service quality is embodied into the functions realizing P (S).

Dynamically occurring infrastructure resource outages and/or failures (such
as component upgrades or removals) may manifest as observable behavioral
changes in a service offering. Based on a quantitative assessment of these changes,



Service-Level Management of Adaptive Distributed Network Applications 105

an adaptive client application may adjust its service parameters to match the
available network resources: relax service expectations when resources are lim-
ited, and tighten them otherwise. In some cases, even with sufficient resources,
a client may wish to relax its service expectations — for reasons such as usage-
sensitive service tariffs.

Guaranteeing a minimal service obligation to clientele against severe failure
conditions in the infrastructure depicts ’service availability’. If availability takes
precedence over performance, the SP may employ an operationally safe protocol
despite it being heavy-weight in terms of resource usage. Such a protocol incurs
a bounded recovery time when failures occur. On the other hand, if performance
is more important, a light-weight protocol may be employed — though it is
unsafe. For example, a ’nack’-based protocol may be employed for a ’end-to-end
data transfer’ service when packet loss in the network is low, and an ’ack’-based
protocol otherwise. The latter guarantees a correct ’data transfer’ between users
but at a lower transfer rate. In general, the client-level prescriptions of a service
should capture the tradeoffs between availability and performance.

2.3 Time-Scales of Service Monitoring

One may consider the possibility of a client detecting service degradations
through symptoms in the problem-domain that may manifest therefrom. Due
to slower dynamics of the problem-specific state analyzed by clients, the latency
in such a detection of symptoms may be higher. On the other hand, an auto-
mated detection of the symptoms of network service degradation involves simply
comparing the client-prescriptions of expected service behaviors and the param-
eters of actual service offering from the network infrastructure. Such a detection
can be realized over a much faster time-scale. Figure 2 shows our experimental
studies on the relative time-scales of congestion detection at various layers of a
video distribution network. In these studies, the human-perceived quality degra-
dation at the video receivers is on a slower time-scale, when compared to the
receiver agent-level detection based on the fluctuations in observed frame loss
rates. Accordingly, a recovery triggered by user-level notifications (say, through a
GUI on receiver windows) incurs higher latency, and is less responsive to network
congestions. In general, program-level symptoms can be detected much sooner
than the corresponding problem-domain anamolies.

A service degradation can be detected by identifying specific patterns of
state changes in a computational projection of the problem-domain. Accordingly,
adaptive service provisioning can be realized by distributed algorithms that in-
terpret the monitored program-level state variables at computational time-scales
(such as how frequent the state variables are sampled). This allows recovery from,
say, an infrastructure resource failure in a timely manner.

2.4 Management Module for Reconfigurable Services (RSMM)

In a basic form, the RSMM maps client-initiated service requests onto a specific
protocol at network infrastructure level. For this purpose, the RSMM maintains



106 K. Ravindran and X. Liu

(due to rapid drop

detection of threshold crossing)

X

(due to automatic

User-level triggers

Time-points  of significant change in bandwidth

X
in perceived quality)

Agent-level triggers

X

0

i

0carry video at min.rate 0
bandwidth required to

presentation quality

Time    t

(at receiverer agent level)

in network

Actual video frame rate

τ(2)

τ(3) τ(5)

τ(6)

τ(9)
τ(10)

τ(1)

τ(11)

:  i-th time unit in the ‘bandwidth availability’ time-scale

Perceived

Bandwidth availability

(at human-user level)

τ(  ), . .

Fig. 2. Time-scales of parameters at various layers of video distribution network

the binding information for various services provided by the network infrastruc-
ture. The focus of our research is on additional functionalities desired of the
RSMM: service monitoring and coordination of client adaptation, to support
dynamic settings where changes and/or outages in infrastructure resources may
occur at various points in time1. See Figure 3. The RSMM functionalities should
be independent of the problem-domain a service offering may pertain to.

If the RSMM does not provide for service monitoring, detection of ser-
vice degradation by clients (and a subsequent adaptation) is possible only over
problem-specific time-scales. On the other hand, RSMM support for service mon-
itoring enables client adaptations to occur at computational time-scales. These
cases are illustrated by scenario-A and scenario-B respectively in Figure 3.

Suppose the client actions to deal with service degradations are expressible in
a closed-form involving application-supplied functions. Here, the RSMM agents

1 In comparison with isolating the network subsystems based on observed outages in
aggregated network elements [9], our work focuses on application-level adaptations
to deal with such outages.



Service-Level Management of Adaptive Distributed Network Applications 107

Network service interface S

with parameters

M

B
(S

)
b

eh
av

io
r

m
on

it
or

(client directly detecting 
failure of service obligation

from problem-domain anamolies)

M

M

M

M

.

.

.

B(S) falls below service
level prescribed by S(par)

M:  monitoring activity

(agent-based dectection of
service obligation failure by

automated interface monitoring)

adapts
client

degradation

latency in

notify
degrad-
ation

detection
additional

adapts
client

infrastructure resource usage q

notify

detect

degradation

S
er

vi
ce

 p
ro

vi
d

er

service obligation failure  ==>  

for service

(par)

S

S

SCENARIO    B

instantiate
par

TIME

Client

P(S)

invoke
S(par)

Protocol employed

S

S
er

vi
ce

 m
an

ag
em

en
t

R
ec

on
fi

gu
ra

b
le

m
od

u
le

 (
R

S
M

M
)

invoke
(S,par)

fails
obligation

service

(p
ar

’)

X

ch
an

ge

SCENARIO    A

renegotiate
(S,par’)

P(S)

X

Service

obligation fails
service

invoke
(S,par)

C
ClientService

P(S)

RSMM

complete
(S)

renegotiate
(S,par’)

X

(p
ar

’)
ch

an
ge

C
Client

P(S)

Fig. 3. A high level view of reconfigurable network service offering

at the client and service sites can coordinate with one another to reconfigure the
application over computational time scales (e.g., reducing the video send rate
in a ’multiplicative decrease’ form during network congestion). Otherwise, the
RSMM may signal an exception that triggers client-level recovery over problem-
specific time scales (e.g., human intervention to reduce the video window size
and/or switch to a low quality encoding [6]).

For monitoring service-level compliance checks with respect to client expec-
tations, the RSMM instantiates service-level meta-data dissemination protocols
with parameters pertaining to the problem-domain. The monitoring and control
roles of RSMM should themselves be independent of the service-specifics (at
meta-level), so that they can be instantiated across diverse problem-domains2.

2 The service description language should allow capturing the ’flow of time’ — so that
’time scale’ can be expressed as a parameter [10].



108 K. Ravindran and X. Liu

2.5 Management View of Sample Network Application: CDN

We delineate the management aspects of network service provisioning from the
details of how the underlying protocols function in providing the service. In this
light, we examine a ’content distribution network’ (CDN).

A server hosts the content pages of an information base — e.g., an electronic
shopping catalogue. With a large number of clients trying to access various parts
of the information (or, pages), the server maintains copies of pages at multiple
nodes of the distribution network (such as in AKAMAI) [11]. When a client (say,
a web browser) accesses the CDN server for a page, the request is forwarded to
the nearest node containing this page for downloading. Keeping copies of the
pages at multiple nodes in the network (i.e., replica nodes or proxies) increases
access performance and offers higher availability of the information base. The
attributes prescribed by CDN clients may include the tolerances to page access
latency and miss rate on page delivery deadlines.

There are two elements of the protocol mechanisms: i) placement of repli-
cas in the network, and ii) update policies for keeping the replicas consis-
tent3. See Figure 4 for illustration. The geographic spread-out of replicas rel-
ative to the location of clients in the network and the page update policies to
keep the copies consistent determine the latency in fetching pages by a client.
The policies for replica placement and page updates are chosen by the CDN
protocol4.

The protocol mechanisms (i) and (ii) constitute the ‘resources’ in terms of
our service management model. The agents placed at client nodes continuously
monitor the access latency, so that the client nodes can adapt their access be-
havior — such as removing a page from their access set if it incurs excessive
latency and/or stipulating tighter controls on (i) and (ii).

As can be seen, a management view delineates the protocol mechanisms em-
ployed in the problem-domain and the generic monitoring and control tools that
interwork with these mechanisms. In terms of this view, we now describe our
’function’-based service model and the underlying management techniques.

3 Our ‘Function’-Based Model of Services

We employ an application-oriented functional approach to managing network
services. It underscores the theme: reconfigurability of network services.

3 Page update policies include correcting the copy at a node when a client attempts to
access this copy (client-driven updates) and correcting the copies at various nodes
whenever the server changes its master copy (server-driven updates).

4 In the management view, a CDN client need not be an end-user of content pages.
The client may possibly represent an access box feeding pages to a community of
customers in a geographic area. In the latter case, the access box may derive its
’access latency’ prescription to the SP from an aggregation analysis of the individual
customer needs. The QOS composition mechanisms employed by the access box (say,
for customer pricing) are however outside the purview of a management model.



Service-Level Management of Adaptive Distributed Network Applications 109

PROJECTION
MANAGEMENT

RSMM

Access page xA(x) :

A(p-a)

monitor

TOPOLOGY

(links and nodes)

PAGE ACCESS
PROTOCOL

CONTENT DISTRIBUTION NETWORK

c3

c1

p-a

p-b

p-a

S
server

content
A(p-b)

A(p-b)

and content server

service interface
page access behavior

(say, page fetch latency)

(replica placement and

MAINTANENCE

page access

p-bClient

delay
monitor

agent

p-a p-b

web browsers (clients)

page update policies)

(tolerable access delay)

Link

c2

Client

Client

Content pagesp-a, p-b :

agent
monitor

delay

Nodeupdate message

u({p-b})

p-b})
u({p-a,

u({p-a,p-b})

u({x}): for pages {x}

Fig. 4. Management view of a content distribution network

P P’ P’"P"

Service provider
for Sa

Service provider
Sfor for Sb

Service provider

to service requirement

S(par) Sb(par-b)

x

monitor compliance

Protocol internal state
at run-time

(par-b)(par)

Sb

s2

Sa

s1

S

Protocol Protocol

form of API)

service service

M
a
n

a
g
em

en
t 

m
o
d

u
le

 f
o
r

Protocol

(service user)

Client application

service
definition

(declarative
form)

of request
validation

Protocol

instantiation
parameter

SERVICE INTERFACE

x

parameter
instantiation

R
ec

o
n

fi
g
u

ra
b

le
 S

er
v
ic

es

.   .   .

NETWORK
SERVICE   BASE

M-C :  Interface between clients and RSMM M-P :  Interface between protocol services and RSMM

Mapping of protocol execution to client-visible service interface

tiation
instan-

M-P

M-C

Binding of protocol to service

( 
R

S
M

M
 )

TO CLIENTELE

requirements
(in declarative form)

invocation on invocation on

(embedded into a procedural

Fig. 5. Architectural view of our service management system



110 K. Ravindran and X. Liu

3.1 Service Normalization

Figure 5 shows an architectural view of how different types of services can be
supported through a general-purpose service management system.

First, when different protocol modules P (S), P ′(S), · · · are capable of provid-
ing a given network service S, the externally visible behaviors of P (S), P ′(S), · · ·
are represented through a set of features common to S. This ensures that the
choice of a protocol module by the SP to handle a given client request on S and
the use of service-specific functions to manage S are transparent to the RSMM.
At the client-service interface level, the differences in internal mechanisms em-
ployed by P (S), P ′(S), · · · are not visible to the clients. Second, with a multitude
of network service offerings S1, S2, · · · to be managed by the RSMM, it is desir-
able that the behavior descriptions of S1, S2, · · · be captured through a uniform
meta-language. This allows the RSMM to employ the same set of management
tools across various types of network services, by simply instantiating the tools
with service-specific parameters.

The above goals require that service behaviors are representable in a canonical
form, in terms of the notations allowed by a generic service description language.
Towards this end, the protocols P (S), P ′(S), · · · expose a common interface state
Ψ(S) to clients through the SP, denoted as:

Ψ(S) = {αi}i=1,···,k for k≥1,

where α1, · · · , αk are state variables. From a client’s perspective, the αi’s are the
service attributes exported by S that can be compared against ‘values’ supplied
by the client to determine if S meets the behavioral expectations.

3.2 Protocol-to-Service Mapping

A protocol P (S) realizing the service S maintains a state s, which is a reflection
of the infrastructure resource usage by the internal mechanisms of P (S). At the
service level, the interface state Ψ(S) is a mapping of the form:

Ψ(S) = γ(P,S)(s)

prescribed by the SP. Consider the example of a ‘virtual circuit’ service im-
plemented by an ack-based window protocol over a network, referred to as
WIN(VIRT). A range of achievable data transfer rates over the ‘virtual circuit’
can be prescribed by a client (i.e., data sender/receiver). Infrastructure resources
are the send/receive window w, and the link capacity c and error probability e.
A client-visible interface state is the link utilization, given as:

Ψ(VIRT) = γ(WIN,VIRT)({w, c, e}),

where γ(WIN,VIRT) may be an analytical formula for computing the link utiliza-
tion α1 in terms of the infrastructure parameters w, c and e (among others)5

5 The achievable link utilization is given by: α1 = 1

1+ 1
w

+ (l−1).T.R
w.C

, where l is the mean

number of transmissions per packet (expressed in terms of e, the timeout period T
for retransmissions, and the packet size R).



Service-Level Management of Adaptive Distributed Network Applications 111

[12]. The γ(WIN,VIRT) is encapsulated into an ‘applicative’ function supplied by
the ’circuit’ provider. In general, γ(P,S) depicts a static mapping relation between
the protocol internal state s and the client-visible interface state Ψ(S).

In legacy systems however, an explicit representation of the protocol inter-
nal state s may not be feasible (e.g., ’available bandwidth’ on a TCP connec-
tion). In such cases, the SP may declare one or more of the service attributes
as unspecified, i.e., these attributes can neither be assigned ’values’ by clients
nor be exported as ’indicators’ of network conditions by the SP. Here, the
γ(P,S) is simply a stub library to implement the procedural hooks to the service
module.

Given our state-oriented interface characterizations, a language like JAVA is
more suitable for service-independent interface descriptions (in comparison to
data-oriented languages like XML [13]).

3.3 Service-Level Behavioral Descriptions

The requirement of a generic behavioral interface can be met with a ‘function’-
based model of service provisioning that involves the RSMM and the client
and service modules. We use modular decomposition principles to structure
these functions and the flow of meta-information between them. Refer to
Figure 5.

The externally visible behavior of S can be described as a set of generic
logical relations on the interface state components α1, · · · , αk:

L(Ψ(S)) ≡ Φ({o1(α1), · · · , ok(αk)})

where o1, · · · , ok are ‘applicative functions’ that produce boolean results based on
the values of α1, · · · , αk respectively and Φ(· · ·) depicts logical relations: AND,
OR, and NOR. Such a behavior description allows the RSMM tools to be inde-
pendent of the problem-domain S pertains to.

Consider the example of a video distribution service (VDIST). The sustain-
able frame rate and the inter-frame delay are the interface state components.
L(Ψ(VDIST)) may capture a condition: ‘frame rate is no less than vrate’ and
‘frame-delay is no more than vdel’. This condition may be represented as:

L(Ψ(VDIST) ≡ [> (FRATE, vrate) ∧ < (FDEL, vdel)],

with ‘>’ and ‘<’ being ‘applicative’ functions to compare with the values vrate
and vdel respectively, as prescribed by the client (for use by the RSMM); FRATE
and FDEL are the names of service features that allow client-level handle on the
frame rate and frame delay respectively.

As can be seen, the service interface state may be derived through static
mappings of protocol internal states, whereupon service behaviors may be de-
termined by exercising logical relations among the interface state components.
The extraction of service behaviors from the interface state forms a core part of
the monitoring functionality of RSMM.

Largely, our RSMM acts as a broker, liaisoning clients with services, based
on client-specified requirements and published service capabilities. The actual



112 K. Ravindran and X. Liu

provisioning of a requested service is itself done directly by the SP. This is
different from the ’contract-bidding’ based management model suggested in [18]
which requires service-specific procedures to be rigidly integrated into the model.

4 Related Paradigms for Managing Distributed
Networks

We project our service management function in the light of currently prevalent
management approaches: i) resource-level monitoring, and ii) ‘SNMP’-based
functional management. We focus the comparison on the programming model
of service management, i.e., how a service management can be built into a pro-
gramming environment for constructing distributed network subsystems.

4.1 Resource-Level Monitoring

The ReMoS system [14] provides a query-based interface to obtain informa-
tion about resource availability in a form meaningful for the SP to support
application-level information flows. Likewise, the QOS Broker System (QBS)
[15] provides for QOS specification, resource reservation, and resource monitor-
ing. The QBS allows prescribing QOS violations that can be detected by ‘sensor’
objects (e.g., video frame delay jitter threshold of .15 msec). The scope of our
work, when cast in the above lights, is in the SP-level mapping of flow specs
onto network resource parameters.

The Rutgers Environment Aware API [16] provides for application adapta-
tion through asynchronous event delivery, where an event is prescribed at an
appropriate abstraction level along with a handler for that event type. Though
the Rutgers API caters to a variety of network applications, its usefulness has
been studied mainly to provide adaptation in relation to network-centered pa-
rameters (such as link bandwidth and security). In contrast, our model unifies
the management of both information networks and data networks through a
canonical and meta-level service-oriented interface. We extend the notion of in-
frastructure resources to cover beyond the traditional network parameters.

The RSMM part of SP may employ, say, the ReMoS primitives or the Rut-
gers API to monitor the symptoms of resource failures over selected time-scales.
For instance, the ReMoS procedures for statistical estimations can be employed
by the RSMM for smoothing and/or filtering of monitored parameters. Like-
wise, the QOS specs from applications can be signaled to the SP using the
ReMoS primitives. The RSMM may also adopt the QBS methods to prescribe
when an increase or a decrease in resource usage should take place. In con-
trast with such QOS specifications and mapping, the control actions of SP for
QOS management are problem-specific (e.g., determining the proxy placement
in CDNs). So, the SP consists more of ‘resource adaptation’ functionalities me-
diated through the RSMM. Our service-level management model reflects this
emphasis.



Service-Level Management of Adaptive Distributed Network Applications 113

4.2 SNMP-Based Network Monitoring Approach

SNMP defines a set of APIs that can be invoked at a network management sta-
tion, and also the underlying (signaling) message exchanges between the man-
agement station and the agents executing at target protocol sites [17]. A ‘sniffer’
tool is provided that examines all packets exchanged through the protocol being
monitored, without disrupting their flow. One useful SNMP feature is a pre-
scription of packet filters based on ‘logical expressions’ that select which packets
are captured for further analysis (e.g., all packets from an IP host to a specific
‘ethernet interface’ address). An event table prescribes when a notification or
an alarm, is to be sent to the management station (e.g., when the number of
packets destined to a given host exceeding a limit).

Packet selection criteria and the functions necessary to prescribe events there-
from are oriented towards traffic and fault analysis at various network elements.
For example, the number of ICMP packet losses suffered at a router node exceed-
ing a limit may be treated as indicative of a crash of this node. Arbitrary packet
selection criteria can be loaded into ‘filter tables’ maintained by the network
management system, along with a provision of basic functions to operate on the
filtered streams of packets (e.g., computing the probability of packet loss). In
contrast, our approach is towards behavior analysis of network subsystems as
seen by applications through service interfaces.

In SNMP, the ‘network management’ user basically selects a function to op-
erate on a packet stream from a menu of functions (possibly, through a GUI)
hardwired into the management system. From the perspective of service pro-
gramming, the presence of human user in the monitoring-reconfiguration loop
makes pushes the SNMP model to a lower level, in comparison to our approach.

We now provide, as a case study, a management-oriented description of how
service-level monitoring and control can be realized in CDNs — c.f. section 2.5.

5 Case Study of Reconfiguration Management in CDNs

We first capture the service-level behavior, i.e., changes in page access latency
with respect to the degree of page replication — as shown in Figure 6. We then
describe the meta-activities of RSMM to adjust the page replication at run-time.

The page access latency PLAT, which is a client-visible attribute, is influenced
by the replication mechanism that allows the nearest and most-recent copy of
a page in the network to be accessed. The protocol-level mechanism depicts
the exercising of infrastructure resources, namely, ‘sync’ message exchanges and
traversal of data over network links.

The internal state of a protocol that realizes the CDN service is the current
placement of replicas repsetcur and the link delays between nodes ldelcur. The
SP may provide a mapping function:

plat(i) = γ(U,CDN)(repsetcur, ldelcur),



114 K. Ravindran and X. Liu

0.1 0.40.2 1.00.60

pa
ge

 a
cc

es
s 

la
te

nc
y

(n
or

m
al

iz
ed

)

degree of page replication  r
only master

server is present

each network node
functions as

proxy for page

fraction  r of  the network nodes
contain copies of a page
(uniformly spread out in

network topology)

delay in fetching page at the
immediate next hop node from client

Fig. 6. Quantitative behavior-oriented study of CDN service

to yield the value of PLAT in an ith sampling interval. The function may be
specific to an update policy U on pages employed by the CDN protocol (i.e.,
client-driven or server-driven or page lifetime-based).

We consider four types of operations provided by the CDN SP for use by the
RSMM to control the replica placement:

plat(obs) = smooth latency samples({plat(i)}i=1,2,···);
platnew = set latency(plat′c, plat(obs));
repsetnew = get replica placement(plat(obs), platnew);
change replica placement(repsetnew);

where {plat(1), plat(2), · · ·} are the time-chronological sequence of samples of
PLAT from which a smoothed observation plat(obs) can be extracted and
repsetnew depicts a new placement of replicas on the CDN nodes to bound PLAT
to less than platnew. The ‘smooth latency samples’ operation may simply be an
averaging mechanism over a time-scale meaningful to the ‘content distribution’
application. The condition > (plat(obs), platc), i.e., the monitored ‘value’ platobs

exceeding platc, may cause the RSMM to trigger a change in replica placements,
where platc is the currently prescribed value for PLAT.

The ‘set latency’ operation may compute platnew as, say,[plat′c−Δ×(plat(obs)
−plat′c))], where plat′c is a modified limit on latency prescribed by the client and
Δ is a parameter used by the SP for ‘control-theoretic’ stability of the changes in
latency. The ‘get replica placement’ function may employ the γ(U,CDN) function
in determining repsetnew that will cause the latency to not exceed platnew. The
‘change replica placement’ function is specific to the update policy employed



Service-Level Management of Adaptive Distributed Network Applications 115

by the CDN protocol. Suppose a server-driven update policy is employed. If
repsetnew ⊃ repsetcur, the replicas (repsetnew − repsetcur) are initialized to
the current page content, and then installed at the designated CDN nodes. If
repsetnew ⊂ repsetcur, the replicas (repsetcur − repsetnew) are removed from
the concerned CDN nodes. Other cases can be a combination of these mecha-
nisms.

The operations listed for a CDN service are supplied by the SP as ‘applicative’
functions that can be invoked by the RSMM. The client prescribes the moni-
toring conditions through ‘applicative’ functions: the ‘>’ relation on latency
values, for use by the RSMM6.

6 Conclusions

When developing distributed network services, challenges arise due to sub-system
level failures and/or changes that may dynamically occur and can, in turn, affect
the application functionality. How such sub-system level events impact applica-
tions is specific to the problem-domain. In this paper, we described an automated
and generic management tool that enables the client application to reconfigure
whenever there is a service change or failure.

To support the integration of service management tools into distributed net-
work development environments, we employed a paradigm founded on modular
decomposition principles. In this paradigm, a service may be provided by a proto-
col module through a generic interface, with the client application instantiating
this module with a desired set of parameters. The service-level management mod-
ule (RSMM) maintains the binding information for various network services that
can be provided through the infrastructure resource usage. The RSMM supports
a highly dynamic setting, such as changes and/or outages in service provision-
ing occurring at various points in time and in different time-scales. The RSMM
effectively ‘brokers’ between clients and services to coordinate their interactions
in a flexible and configurable manner.

Our paper described a new model of service provisioning: a ‘function’-based
decomposition of service components. The model separates a service interface
to clients from the details of protocol modules that actually provide the ser-
vice. Critical properties may be associated with a service interface, prescribable
in the form of logical relations on service attributes. Client invocations on a
service may instantiate these attributes with a set of parameters, along with a
prescription of what service property should hold. The model allows dynamic
reconfiguration from one set of parameters to another, in case a service property
violation occurs at run-time. For this purpose, the RSMM incorporates a mon-
itoring functionality that checks for compliance to prescribed critical properties
at run-time. The paper also described the case study of a network applica-
tion: CDN.

6 [19] provides architectural frameworks to encapsulate ‘policy’ functions in systems
for managing service-level infrastructures.



116 K. Ravindran and X. Liu

The ‘function’-based structuring and the service-neutrality that underscore
our service model offer the flexibility of service growths and the extensibility
of supporting diverse client requirements. This is much broader in scope, when
compared to the existing management models based on SNMP and OSI-TMN.
Our model can be implemented in an appropriate object-oriented programming
language that offers the capability of dynamically dispatchable protocol code
(such as JAVA) [20]. It can thus facilitate the rapid development and deployment
of network services.

References

1. S. Erfani, V. B. Lawrence, and M. Malek. The Management Paradigm Shift:
Challenges from Element Management to Service Management. In Appli-
cations, Platforms, and Services, Bell Labs Technical Journal, vol.5, no.3, pp.3-20,
July-Sept. 2000.

2. M. Subramanian. Telecommunications Management Network. Chap. 11,
Network Management: Principles and Practice, Addison-Wesley Publ. Co., 2000.

3. M. Horstmann and M. Kirtland. DCOM Architecture. MSDN Library,
http://www.msdn.microsoft.com/library, July 1997.

4. Object Management Group. The Common Object Request Broker: Archi-
tecture and Specification. Rev.2.0, OMG, Framingham (MA), 1995.

5. A. S. Tanenbaum. In Switching: The Telephone System. Chap. 2., Computer
Networks, Prentice-Hall Publ. Co., pp.130-134, 1996.

6. C. Diot, C. Huitema, T. Turletti. Multimedia Applications Should be Adap-
tive. In Proc. HPCS’95, Mystic (CN), Aug. 1995.

7. K. Ravindran and R. Steinmetz. Object-oriented Communication Structures
for Multimedia Data Transport. In IEEE Journal on Selected Areas in Com-
munications, Special Issue on Distributed Multimedia Systems and Technology,
14(7), pp.1360-1375, Sept. 1996.

8. K. Ravindran and K. K. Ramakrishnan. Feature-based Service Specification
in Distributed Systems. In proc. Intl. conf. on Distributed Computing Systems,
IEEE-CS, Arlington (TX), May 1991.

9. V. Sethaput, A. Onart, and F. Travostino. Regatta: A Framework for Au-
tomated Supervision of Network Clouds. In Proc. OPENARCH 2001, An-
chorage (AK), pp. 104-114, April 2001.

10. L. Yilmaz and S. H. Edwards. Specifying and Verifying Collaborative Be-
havior in Component-based Systems. In proc. RESOLVE Workshop 2002,
Columbus (OH), June 2002.

11. J. Chase, S. Gadde and M. Rabinovich. Web Caching and Content Distribu-
tion: a View from the Interior. In 5th Intl. Workshop on Web Caching and
Content Delivery, Lisboa (Portugal), 2000.

12. M. Schwartz. Telecommunication Networks: Protocols, Modeling, and
Analysis. Addison-Wesley Publ. Co., Nov. 1988.

13. M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and J. E. Shuster.
UIML: An Appliance-Independent XML User Interface Language. In
proc. Eighth International World Wide Web Conference, Toronto (Canada), 1999.

14. T. Dewitt, T. Gross, B. Lowekamp, N. Miller, P. Steenkiste, J. Subhlok, and D.
Sutherland. ReMoS: A Resource Monitoring System for Network-Aware
Applications. In Tech. Report, CMU-CS-97-194, Dec. 1997.



Service-Level Management of Adaptive Distributed Network Applications 117

15. M. Katchbaw, H. Lutfiyya, and M. Bauer. Driving Resource Management
with Application-level Quality of Service Specifications. In Proc. 1st Intl.
Conf. on Information and Computation Economies, ICE98, Oct. 1998.

16. B. Badrinath, A. Fox, L. Kleinrock, G. Popek, P. Reiher, and M. Satyanaranyanan.
A Conceptual Framework for Network and Client Adaptation. In IEEE
Mobile Networks and Applications, 2000.

17. M. Subramanian. SNMP Management RMON. Chap. 8, Network Manage-
ment: Principles and Practice, Addison-Wesley Publ. Co., 2000.

18. G. Kar and A. Keller. An Architecture for Managing Application Services
over Global Networks. In proc. INFOCOM’01, IEEE-CS, Anchorage (AK),
pp.1020-1027, April 2001.

19. D. Verma, M. Beigi and R. Jennings Policy-based SLA Management in En-
terprise Networks. In Res. Report, IBM T. J. Watson Res. Center, 2001.

20. D. J. Wetherall, J. V. Guttag and D. L. Tennenhouse. ANTS: A Toolkit for
Building and Dynamically Deploying Network Protocols. In Proc. IEEE
OPENARCH’98, San Fransisco (CA), April 1998.



 

M. Malek et al. (Eds.): ISAS 2004, LNCS 3335, pp. 118–133, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Methodology on MPLS VPN Service Management  
with Resilience Constraints   

Jong-Tae Park and Min-Hee Kwon 

School of Electronic and Electrical Engineering, Kyungpook National University 
1370, Sankyuk-Dong, Buk-Gu, Taegu, Korea 702-701 

{jtpark, minhi}@ee.knu.ac.kr 

Abstract. Recent advent of broad bandwidth wireless and optical networks 
makes the resilience of information and communication service to system 
failures to become a critical issue. In this article, we present a methodology for 
MPLS VPN service management employing a resilience model. The methods 
can dynamically configure the service paths of MPLS VPN satisfying the TE 
resilience requirement from the customers. Specifically, we describe backup 
path design rules and derive the conditions for testing the availability of feasible 
backup paths satisfying the resilience constraints in a full mesh MPLS VPN. 
We present fast backup path construction algorithms which could make the 
MPLS VPN service to be available with minimal disruption, satisfying the 
resilience requirement from the customers. The simulation has been done to 
evaluate the performance and service availability in a BGP/MPLS backbone 
network with full mesh structure. 

Keywords: MPLS VPN management, MPLS Recovery Mechanism, Resili-
ence, Path Selection, Fault Management. 

1   Introduction 

Recent advent of broad bandwidth wireless and optical networks makes the resilience 
of information and communication service to system failures to become a critical 
issue. The failure of network components can be generally caused by many reasons 
including both hardware and software malfunction. The failure caused by hardware 
malfunction includes the malfunctioning of network interface card, link arithmetic 
errors in CPU, transmission equipments, and other I/O devices. The failure caused by 
software may include bugs in the operating system, networking software, and even by 
malicious virus or worms.  In today’s Giga-bit high speed network, any failure may 
incur lots of packet loss, and may incur non-negligible negative impact to the 
business. 

The resilience implies the capability of recovery from these failures. In multi-
protocol label switching (MPLS) networks [1], the failures at lower layers may 

                                                           
 This work was supported by University Research Program of Ministry of Information & 
Communication, Korea. 



A Methodology on MPLS VPN Service Management with Resilience Constraints         119 

 

generate hundreds of link or node failures at higher layers. It is necessary to provide a 
contracted reliable MPLS service to the customers with minimal or no disruption of 
service in case of unexpected multiple failure occurrences, resulting in high service 
availability. Currently, active research work including those of international standard 
bodies [1, 2] is going on for modeling and realizing the resilience in future high-speed 
network such as MPLS/GMPLS networks.  

Recently, the provisioning of virtual private networks (VPN) over the global 
Internet is gaining much popularity. VPN provides interconnections of customer sites 
over a shared network infrastructure. Traditionally, VPNs have been mostly provided 
by the leased lines, but the development of new technology such as (MPLS) enables 
the service providers to look for the better cost-effective solutions in terms of 
scalability, security and quality of service.  The provisioning of VPN over MPLS 
among different Autonomous Systems has been being standardized by IETF [3], and 
several vendors are already providing proprietary solutions such as Cisco’s 
BGP/MPLS VPN, Nortel’s MPLS-based Virtual Router, and Lucent’s Virtual Router. 
MPLS could provide Internet service with QoS guarantee to the customers over 
MPLS backbone. 

In BGP/MPLS VPN, the VPN routing information is distributed by MP-BGP [4] 
over the service provider’s backbone network, and MPLS is used as an underlying 
network infrastructure device to forward the VPN traffic among the participating 
VPN sites. In BGP/MPLS VPN, the connection-less IP traffic of a VPN customer site 
is transparently transmitted through a provider’s connection-oriented data paths, more 
specifically label switched paths (LSPs), of a MPLS backbone. The efficient design of 
these paths for BGP/MPLS VPN is an active research area [5]. RSVP-TE [6] or CR-
LDP [7] is recommended for setting up these paths for BGP/MPLS VPN traffic. 
MPLS VPN is often configured in a full mesh, and instrumented by establishing and 
maintaining label switched paths (LSPs) of MPLS. 

In this article, we present a methodology for MPLS VPN service management 
employing a resilience mode presented in the accompanying paper submitted to ISAS 
2004 [8]. The methods can dynamically configure the paths of MPLS VPN (LSPs in 
MPLS network) satisfying the TE resilience requirement from the customers. More 
specifically, we propose backup path design rules and derive the conditions for testing 
the availability of feasible backup paths satisfying the resilience constraints in a full 
mesh MPLS VPN. Fast backup path construction algorithms are developed which 
could make the MPLS VPN service to be available with minimal disruption, 
satisfying the resilience requirement from the customers. The simulation has been 
done to evaluate the performance and service availability in a BGP/MPLS backbone 
network with full mesh structure. 

The rapid recovery from these failures, by dynamically provisioning of fast (real-
time) alternative backup paths in the underlying BGP/MPLS backbone is very 
important to both customers and service provider in order to avoid the disastrous 
service disconnection and to protect the critical business operation such as bank 
transaction, critical remote data access, high-level e-government service and so on. 
Traditionally, there have been lots of research works on fault management of 
networks, systems and services and various recovery mechanisms [9], including 
recent work on MPLS [10, 11], GMPLS [12, 13] and optical network [14, 15]. 
However, there have been few research works for formally defining the resilience [8], 
where the author presents a simple model for resilience which enables various 
network and service recovery mechanisms to be represented effectively. In this paper, 



J.-T. Park and M.-H. Kwon 

 

120 

we apply the resilience model proposed in [8] to MPLS VPN service management to 
enhance the availability of the service. Basically, for a given data path associated with 
VPN service, we try to reserve, in advance, a set of additional backup paths such that 
these backup paths are intelligently utilized when some components in the primary 
path are not well operational due to failures. 

In Section 2, we briefly introduce characteristics of MPLS VPN and resilience 
model for service management. In Section 3, we describe backup path design rules for 
MPLS VPN service and derive the conditions for testing the availability of feasible 
backup paths satisfying the resilience constraints. In Section 4, dynamic path 
management strategy for BGP/MPLS VPN service with resilience is presented. 
Section 5 describes the simulation results to evaluate the performance and service 
availability, and finally concluding remarks follows in Section 6. 

2   MPLS VPN Service and Resilience Model 

2.1   Basics of BGP/MPLS VPN Architecture 

Figure 1 shows the basic building blocks of BGP/MPLS VPN configuration. A 
customer edge (CE) device, usually IP-router or a host provides customer access to 
the service provider network. A PE router is usually ingress or egress label switch 
router (LSR) of MPLS network, where VPN traffic enters or exits. Each PE router 
maintains VPN routing information. A provider (P) router is any router within the 
provider’s network which is not directly connected to the CE devices. P routers are 
MPLS transit LSR which forward VPN data traffic between PE routers. Since the 
routing information for VPN traffic is maintained in PE routers, P routers are not 
required to maintain specific VPN routing information. The VPN connections 
between PE routers are maintained by populating VPN routing and forwarding (VRF) 
table in a BGP/MPLS VPN backbone network such that each customer connection is 
mapped to a specific VRF.  

After receiving routing information from CE routers, a PE router exchange the 
routing information with other PE routers using Internal BGP (IBGP). PE routers 
usually establish IBGP sessions in a full mesh or hub-spoke structure. The forwarding 
of VPN data traffic across BGP/MPLS backbone requires an establishment and 
maintenance of connection-oriented data paths between PEs, called label switched 
paths (LSPs). LSP is the path where the data traverses through LSR across an MPLS 
network. IBGP sessions for a VPN service are instrumented by establishing and 
maintaining these LSPs of an MPLS network. 

The management of these LSPs are provided by using label distribution protocol 
(LDP) or RSVP. It is noted that there can be several LSPs with different capabilities 
between PE routers for a specific VPN service. It is also noted that different VPNs 
may have different routes between the same PEs by different VRF tables [3]. 
According to [3], BGP/MPLS VPNs are usually defined by administrative policies, 
which are used for connectivity and QoS guarantees. BGP/MPLS VPNs are defined 
by customers and implemented by service providers. 

In BGP/MPLS VPN, VPN data packets are forwarded to BGP destinations by 
simple label-switching of traffic to a BGP next-hop address. The routes from BGP 
node to a BGP next-hop addresses can be determined via interior gateway protocol 
(IGP) such as OSPF-TE and IS-IS, and label distribution protocol (LDP) allows these 



A Methodology on MPLS VPN Service Management with Resilience Constraints         121 

 

routes to be associated with MPLS labels. PE routers are the only ones that need to 
run BGP. The different routes between a pair of PE nodes can be supported by 
populating VRF table in a BGP/MPLS VPN backbone network. Therefore, the 
backup path for a specific PE sites for a VPN can be easily realized by using MP-
BGP and VRF table. 

 
Fig. 1. BGP/MPLS VPN Configuration 

2.2   The Resilience Model for MPLS Service Management 

The VPN service is realized by maintaining LSPs of MPLS, i.e., MPLS path. The 
management of this MPLS path is thus closely related to the service availability. The 
resilience of an MPLS path is informally defined as a capability of providing the 
communication service with minimal discontinuity and rapidly restoring to the 
original sound situation in the case that some components of the system experience 
failures due to unexpected events. There are diverse protection and restoration 
techniques in MPLS/GMPLS network, which are currently being standardized by 
IETF [10, 11]. Most of them make use of the backup paths in case that the primary 
paths may have some problems. A primary path is defined as the working path along 
which the MPLS data traffic follows [8]. A backup path is defined as the path along 
which the data traffic follows when the primary path is unavailable due either to the 
failure of links or nodes [8].  

The path resilience in MPLS/GMPLS network is formally defined as a real-valued 
function [8] such that 

Path Resilience =  •
SetProtection

onentser of CompTotal Numb

ComponentsProtected Number of 

m

1
 (1) 

Here, m is the multiplicity factor of a primary path and ProtectionSet denotes the 
set of all the backup paths and/or segments to protect the primary path. The 
multiplicity factor m of a path defines the number of total primary paths which are 
sharing a backup path, or a segment. Number of Components implies the total number 
of components in a path, without including the end-nodes of MPLS network since 
they are always shared among primary and backup paths. The Total Number of 
Protected Components implies the total number of components in the path which are 
protected by backup paths. 



J.-T. Park and M.-H. Kwon 

 

122 

In [8], we present a simple model for resilience which enables various network and 
service recovery mechanisms to be represented effectively. A mapping rule to convert 
the customer requirement on service availability to the resilience value, and 
illustrating examples for various protect mode are also described in detail. 

3   Design Rules and Availability Testing for Backup Paths of 
MPLS VPN Service 

In this section, we describe backup path design rules for MPLS VPN service and 
derive the conditions for testing the availability of feasible backup paths satisfying the  

3.1   Path Design Rules for MPLS VPN Service 

We present a few backup path design rules below for fast backup path construction. 

• Rule  1: No node in the path should be trespassed more than once.  
• Rule 2: The backup paths for a given primary path should follow the same 

sequence of nodes and links of the primary path in the sub-paths shared in both 
the primary path and backup path. 

Rule 1 implies that there should be no cycles in the path, which is a usual practice 
engineered in network design. Rule 2 is applied only for the design of backup paths.  

In Figure 2, examples are shown to illustrate the violating cases. In Figure 2(a), the 
path <S, .., T, Q, D> is a primary path. We show two cases for backup path 
construction. With the backup path <S, P, Q, R, T, Q, D> shown in Figure 2(a), Rule 
1 is violated since the node Q is trespassed twice. For the backup path <S, P, Q, R, T, 
W, D> shown in Figure 2(b), although Rule 1 is satisfied, Rule 2 is violated since the 
backup path should follow the sub-path <T, Q, D> of the primary path. In Figure 2(a), 
there is a cycle <Q, R, T, Q>. Before proceeding further, we need a definition, called 
k-protected, which is defined as follows. 

Definition 3.1: A path is k-protected if any segment of the path, consisting of (k-1) 
adjacent nodes and k links connecting these nodes can be protected by backup paths. 

For example, 1-protected path implies that a link in a path is protected, and 2-
protected path implies that one node and 2 links incident to the node in the path are 
protected. It is noted that given a resilience requirement from customers, a k-protected 
path corresponding to the requirement can be decided since the resilience can 
determine the number of protected components in the path. 

 
(a) A case violating Rule 1     (b) A case violating Rule 2 

Fig. 2. The case violating Rule 1 or Rule 2 



A Methodology on MPLS VPN Service Management with Resilience Constraints         123 

 

For example, 1-protected path implies that a link in a path is protected, and 2-
protected path implies that one node and 2 links incident to the node in the path are 
protected. It is noted that given a resilience requirement from customers, a k-protected 
path corresponding to the requirement can be decided since the resilience can 
determine the number of protected components in the path. 

Now, we investigate the inherent properties of generating candidates of backup 
path for a primary path in an MPLS network. We show that some links emanating 
from nodes in a primary path do not contribute to the generation of candidates for 
backup paths. Path design Rule 3 and Path Rejection Rule which are described below 
specify these properties. 

• Rule 3: Protected segment in the primary path should be disjoint with protecting 
segment in the backup path except the beginning and ending nodes of the 
segment.  

 

Fig. 3. Example violating Rule 3 

Rule 3 implies that no component in the protected segment of a primary path may 
be used for the construction of backup paths, except the beginning and ending nodes 
of the protected segment. Figure 3 shows the case which violating Rule 3, where 
neither the segment <S, R, Q, W, D> nor <S, P, T, D> should not be candidate 
segment for the backup path construction. In Figure 3, path domain implies the set of 
nodes in the primary path, and non-path domain implies the set of nodes not included 
in the primary path. 

Theorem 3.1 (Path Rejection Rule): Any link emanating from a node in the 
protected segment of a primary path which is incident to another node (except the 
ending node of the protected segment) in the primary path need not to be considered 
for the backup path design. 

Proof: Let us suppose that there is a path <S, .., T, Q, .., D> as shown in Figure 4. 
Without loss of generality, let us assume that some components (either links, nodes or 
both) in the segment <S, .., T> fail as indicated by the cross mark in Figure 4. Then, 
in order to construct a backup path to protect the segment <S, .., T>, we may try to 
use a direct link <S, Q> from the beginning node S to another node Q in the primary 
path, as shown in Figure 4. In order to build a backup path in this case, we may go 
either from Q to R, Q to T, or Q to D. The choice of using either <Q, T> link or the 
sub-path <Q, .., D> would violate Rule 2. Thus, the link <Q, R> is the only choice for 
some R in non-path domain. In fact, the selection of any nodes in path domain would 
violate Rule 2. 



J.-T. Park and M.-H. Kwon 

 

124 

 
Fig. 4. An example of Path Rejection Rule 

As we arrive at the node R, we have to go back to the node T either by selecting 
the link <R, T> or using some other node W in non-path domain as shown in Figure 
4. As we arrive at the node T, there are also two choices: using the link <T, Q> or 
using the other link. Using the link <T, Q> would violate Rule 1, since a cycle is 
created, and using the other link to any node in the path would violate Rule 2. 
Therefore, in order to protect the segment <S, .., T>, any backup path beginning from 
the direct link from S to another node in path domain would eventually be confronted 
with violating either Rule 1 or Rule 2. By combining all these facts associated with 
Rule 1, Rule 2 and Rule 3, we can conclude that any link emanating from a node in a 
primary which is incident to another node in the primary path need not to be 
considered for the backup path design. In Figure 4, according to Rule 3, any link 
emanating from intermediate nodes between nodes S and T should not be used for 
backup. The link connecting directly the beginning and ending node of a protected 
segment is the only candidate for a backup segment for the case of using nodes in a 
path domain. This completes the proof.   

3.2 Availability Testing for Backup Paths of MPLS VPN Service  

In this subsection, we derive the conditions for testing the availability of feasible 
backup paths satisfying the resilience constraints. We first give a definition of path 
independence in a full mesh MPLS VPN.  

Definition 3.2: For a path of a full mesh MPLS VPN, two cycles are said to be path-
independent if all the links of two cycles are different except links contained in the 
path. For example, for the network shown in Figure 5, let us assume that there exist 
two path cycles 1Φ and 2Φ , where 1Φ = <P1, R, …, Pk+1, P1> and 2Φ = < P1, Q, 
…, Pk+1, P1>. Since there are no links shared in cycles 1Φ  and 2Φ , they are path-
independent where the path is <P1, R, …, Pk+1>.   

 

Fig. 5. Two path-independent cycles 



A Methodology on MPLS VPN Service Management with Resilience Constraints         125 

 

Theorem 3.2: For a path, there exist two cycles which are path-independent to each 
other, and the k links of each cycle are shared with the path. Then, for any failure of 
links in either one of the cycles which are not contained in the path, we can construct 
a k-protected path, but not both. 

Proof: Without loss of generality, let us assume that there exist two path-independent 
cycles 1Φ  and 2Φ , where 1Φ  = <P1, R, …, Pk+1, P1> and 2Φ  = < P1, Q, …, Pk+1, P1> 
as shown in Figure 5, where S and D represent the ingress and egress nodes, 
respectively. It is noted that nodes R and Q are not contained in the path. Assume that 
some of the links of the sub-path <P1, Pk+1> fail. Suppose that the cycle 1Φ  fails. In 
other words, either <P1, R> or <Pk+1, R> fail. In this case, we can construct a backup 
path <S, P1, Q, Pk+1, .., D>. Therefore, the path is k-protected in the case where the 
cycle 1Φ  fails. We can prove similarly for the case where the cycle 2Φ  fails. If both 

1Φ  and 2Φ  fail, the path is disconnected, so that there is no backup path which 
makes the path to be k-protected. This complete 

Theorem 3.3: For an MPLS network with N nodes with full mesh structure, where N 
> 3 and k > 1, any path with n nodes is k-protected even though ζ number of links 
including a protected link of the path fails, where 

ζ  =  
>−++×

≤−+×
kjforkjnki

kjforknki

)2()(

)()(
 (2) 

Here, n = N – 1, n = 2ik + j, j = 0, 1, …, (2k-1), and i is a non-negative integer. 

Proof: Without loss of generality, let us assume that the path with n nodes is 
configured as shown in Figure 6, where the cycles <P0, Pk, …, P1, P0> and <P1, Pk+1, Pk, 
…, P1> are independent. It is noted that we do not have to consider the configurations 
which would violate the path design rules in previous Subsection 3.2. It is easily 
shown that the number of these types of cycles is equal to (n-k), each of which is 
made with direct links connecting two nodes which is located k-link away in the path. 

 

Fig. 6. MPLS VPN configuration for evaluating k-protected path 

Next, we show that if there are (i * k) numbers of independent cycles at the lower 
part of Figure 6, i.e., the cycle starting from the node R. It is also easily shown that 
the cycle <R, P0, P1 …, Pk, R> and <R, P1, …, Pk+1, R> are independent. In this way, 
we can proceed to make independent cycles starting from R through the link <R, P0>, 
and next another cycle through the link <R, P1>, and so on, until the link <R, Pk-1> 
being covered. However, when we arrive at the link <R, Pk>, it is found that we can 
not make the cycle <R, Pk, Pk+1 …, P2k, R> to be independent cycle, since the link <R, 



J.-T. Park and M.-H. Kwon 

 

126 

Pk> will be shared between two cycles if being proceeded. We can restart the building 
of independent cycle from the link <R, P2k> to make the independent cycle <R, P2k, 
P2k+1, …, P3k, R> if there exist k more nodes in the path starting from P2k. If the number 
of remaining nodes starting from P2k is less than k, we can not make any other 
independent cycles covering k links. 

Let us assume that there are j numbers of remaining nodes. For a path with n nodes, 
the path can be represented as a multiple of 2k with remain j nodes, i.e., n = 2k x i + j 
for some i and j where i is a non-negative integer, and j = 0, 1, …, (2k-1).  In this 
case, for each 2k block of nodes, there can exist k independent cycles, so that the total 
possible number of independent cycles becomes (i * k) if n = 2ik. If j is less than or 
equal to 2k, the number of independent cycles would still be (i*k) as mentioned 
before. If j > k, we can start to make another (j-k) independent cycles, so that the total 
number of independent cycles would be (i*k) + (j-k). Since there are (n-k) number of 
independent cycles from the direct link connection, the total number of independent 
links for the case with j ≤  k, becomes (i*k) + (n-k). For the case with j > k, it equals 
to (i*k) + (j-k) + (n-k). This completes the proof.  

It is noted that ζ  is a maximal number of allowable failed components which 
could make the primary path to be k-protected under any multiple link failure 
scenario. Now, let us consider the general case where n < N. We first derive the 
solution with the assumption that any direct link between nodes which are not 
involved in the path are not allowed for the construction of backup paths. After 
deriving the solution, we derive the solution for the general case in which the 
assumption is removed.  

4   Dynamic Path Management of MPLS VPN with Resilience  

The establishment and maintenance of VPN paths are dynamically maintained in the 
sense that both the primary and backup paths are setup concurrently in advance, and 
when failures occur, all the paths within a domain which are affected by the failures 
are reconstructed dynamically. This is a hybrid approach in which the merits of both 
path protection and path restoration methods are taken into account. 

The methodology of the dynamic management of BGP/MPLS VPN consists mainly 
of the following four phases. Here, a component implies either a node or a link as 
explained previously. 

Phase (1) Initialization; 
Phase (2) When failure notifications from MPLS backbone arrive, assign a new set of 

VPN paths to minimize the service disruption. 
Phase (3) When overload notifications arrives from MPLS backbone, then  distribute 

the VPN traffic load to other backup paths to maximize the performance. 
Phase (4) Update periodically the availability of both primary and backup paths of 

the MPLS backbone networks with a specified time interval. 

In Phase (1) Initialization, a set of primary and backup paths are determined for 
each VPN, which may take into account the policy of service provider, the quality of 
service constraints, and the resilience constraints of the MPLS VPN service. The 
instrumentation may require the extension of VRF tables and the routing information 
base (RIB). In Phase (2), upon detecting failures of P nodes or links connecting them, 



A Methodology on MPLS VPN Service Management with Resilience Constraints         127 

 

the PE nodes may disable the primary path, and enable the backup path, and switch 
the data traffic to the backup path. While the backup path is operational, the failure 
recovery operation can be performed. In Phase (3), the load balancing can be done, 
and in Phase (4), it periodically checks whether a primary path or backup path for a 
given MPLS VPN service is available or not. Here, it simply checks whether any path 
is malfunctioning due to the failures of constituent components of the path. Phase (2) 
is explained in more detail in Algorithm Dynamic_Path_Mangement which is 
described below. Every PE executes this procedure whenever a failure notification 
arrives. Here, the Resilience_Constraint may specify the value k for the k-protected 
primary path. 

Algorithm Dynamic_Path_Mangement (Failure_Notification,Resilience_Constraint); 
Begin 

Step  (1)  If failure notification is not related to paths starting from PE,  
 Then return (“Irrelevant Failure Notification”); 

Step  (2)  If a primary path is damaged due to the Failure_Notification, 
 Then { 

(2-A) Switch immediately the VPN data traffic to the available backup path; 
(2-B) When the components in the primary path are repaired, restore the 

primary path;} 
Step  (3) Reconstruct the backup paths with Resilience_Constraint, which might  

have been affected by Failure_Notification ; 
End 

If failure notifications arrive from P nodes in the MPLS domain such that the 
primary path is affected, it then immediately switches the VPN data traffic from the 
primary path to the available backup path. It is noted that a path is affected by a 
failure notification if any component in the path is associated with the failure. It also 
reconstructs the backup paths which might have been affected by the failures. The 
Step (3) of the Algorithm Dynamic_Path_Mangement is described in detail in the 
backup path reconstruction algorithm, Algorithm Construct_Backup_Path, which is 
shown below. Here, # (Failure_Notification) implies the number of failed components 
for the simplicity of explanation. Path and BackupPath indicate the primary path and 
the backup path, respectively, with array data type. N denotes the total number of 
nodes. It is noted that once protection mode and a resilience constraint are specified, 
the value k for a k-protected path can be determined. This implies that the value ζ of 
Theorem 3.3 can be obtained from Resilience_Constraint as long as a specific 
protection mode is chosen. Details of deriving the value from Resilience_Consraint is 
for further study area which we are currently working on. For the simulation, we 
assume that 1:1 protection mode is applied.  
Algorithm Construct_Backup_Path (Failure_Notification, Resilience_Constraint); 

/* This algorithm constructs a backup path using the backup path design rule. */ 
/* ζ is determined by the value k of ‘k-protected’ primary path which can in turn 

be determined by Resilience_Constraint. */ 
Begin 

If  # (Failure_Notification)  ≤  ζ   
Then {Pointer := 0; BackupPath[Pointer] := ingress_PE; 

Do {Select a node R where R ∉  Path and R ∉  BackupPath 
and ∃ a link <BackupPath[Pointer], R>; 



J.-T. Park and M.-H. Kwon 

 

128 

BackupPath[Pointer + 1] := R ;  
Pointer := Pointer + 1; 

UNTIL ( R = egress_PE or All nodes which are not belonging to 
Path is covered);}} 

End 
 
 Algorithm Construct_Backup_Path first checks whether it is feasible to construct 

any separate backup paths for the primary path for the case where at least # 
(Failure_Notification) of MPLS links fail due to some faults. By applying the testing 
condition derived in Theorem 3.3, if the testing condition is satisfied, we know that 
there exists an available backup path, and we can rapidly build the backup path which 
is disjoint with the primary path. For searching the feasible backup path satisfying the 
resilience constraints, the algorithm uses the backup path design rule in the 
Subsection 3.1. The backup path construction algorithm is rather simple with the 
computational complexity of O(n) where n is the number of nodes. For the case where 
the testing condition is not satisfied, there might not be available backup paths. This 
requires heuristic path finding algorithms employing provider’s policy, and the 
system robustness, and so on. This is also a further study area which is under 
investigation. 

In summary, each PE node is assumed to have the information of the entire 
BGP/MPLS network such as topology, available bandwidth, P node capacity and so 
on. The testing condition of Theorem 3.3 is paraphrased as follows: If the number of 
failed components is less than or equal to some value which can be determined by the 
resilience constraints, we can construct at least one separate backup path for a given 
primary path associated with BGP/MPLS VPN service even though multiple 
simultaneous links fail in the backbone network. Here, the number of failed links can 
be identified by analyzing the arrived failure notification messages from all P nodes in 
the MPLS backbone to a PE node.  

5   Examples and Simulation Results  

Figure 7 shows the test configuration of MPLS backbone for simulation, consisting of 
5 nodes, and the links between them representing logical connections. We first show 
the examples for explaining the resilience concept. In Figure 7(a), the primary path is 
<P0, P2> and the backup path is <P0, P1, P2>. Here, P0 and P2 are the source and 
destination nodes, respectively. For the primary path shown in Figure 7(a), we can 
make the primary path to have the resilience value of 1, i.e., being 1-protected. In this 
case, applying Theorem 3.3, we know that ζ becomes 3 since n is equal to 2, and (N-
n) is equal to 3. Since n is equal to 2, we know that i is equal to 0 and j becomes 2 in 
Theorem 3.3. Thus, the maximal number of link failures becomes 3, including failures 
in the primary path. In other words, it is always possible to construct a backup path as 
long as the total number of simultaneous link failures, including one in the primary 
path, is less than 3. Figure 7(a) shows the case in which one link in the backup path 
fails. When a component in the primary path fails, it is feasible to construct another 
backup path since the total number of link failures in this case is 2. 



A Methodology on MPLS VPN Service Management with Resilience Constraints         129 

 

 
                            a) 1- link failure                             b) 3 - link failures 

Fig. 7. General case to show non-dependency of ζ on R 

Figure 7(b) shows the situation where the primary path consists of 2 links. In order 
to make the primary path with resilience value of 1, we should build 2-protected 
primary path. Applying Theorem 3.3, it is calculated that the maximal number of link 
failures is 3, which includes a link failure in the primary path. For the case of multiple 
link failures in Figure 7(b), it is not feasible to find a backup path for making the 2-
protected primary path, since the total number of link failures would be 4 including 
one possible link failure in the primary path <P0, P1, P2>.   

As described in Section 4, the data for VPN service enters the source node, and is 
delivered to the destination node if there is no failure in the primary path. If the 
primary path experiences a failure, the failure notification is sent to the source node, 
and the data is delivered to the destination via a backup path. If there is a failure in the 
backup path, it tests the availability of the backup path using the testing condition of 
Theorem 3.3. If satisfied, a new backup path is established very rapidly, and the data 
is switched to the new backup path. Before transmitting the data, it first checks 
whether input buffer at MPLS node is available. If it is available, it delivers the data 
into the buffer. If not available, it either discards the data or switches the data to the 
available backup path according to the load sharing policy.  

In simulation environment shown in Figure 7, the input data traffic enters into the 
node P1, and is transmitted to the node P2. Here, P1 and P5 play the role of the source 
node and destination node, respectively. The source node usually waits for a very 
short time interval to check whether there are other failure notification messages, and 
tests the condition for backup availability if a backup path is not reserved or damaged. 
If the testing condition is satisfied, it can rapidly reconstruct the backup path using the 
backup path design algorithm. The source node can then switch immediately the input 
data traffic to the backup path, resulting in the high service availability with minimal 
service disruption. Before transmitting the input data, the source node also checks 
whether the input buffer at the MPLS node is available. If available, it delivers the 
data into the buffer. If not available, it either discards the data or switches the data to 
the available backup path according to the above load sharing policy. 

In Figure 8, we show the simulation results of the throughput for changing input 
load ranging from 0.5Erlang to 4Erlang where the data rate of each link is assumed to 
be 100Mbyte, the propagation delay of each link being 10ms and the link error  
 



J.-T. Park and M.-H. Kwon 

 

130 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 1 1.5 2 2.5 3 3.5 4

Input Load (Erlnag)

T
h
ro

u
g
h
p
u
t

 = 0  = 0.5  = 1  = 1.5  = 2

 

Fig. 8. Throughput vs. Input load 

probability to be 0.01 with uniform distribution. The input load is assumed to have a 
Poisson probability distribution with the average input rate 0.01. For simplicity, the 
message size is fixed at 1kbyte. Here, the throughput is defined as the ratio of output 
and input data traffics. The throughput is measured by changing the resilience value, 
denoted as , for the values of 0, 0.5, 1 1.5 and 2. For the case of resilience value 0, 
the data loss rate rapidly increases as the input data rate increases. However, the data 
loss rate decreases as the value of resilience increases. This is because with increasing 
value of resilience, the data can be delivered more reliably. 

For example, for the resilience value of 1, approximately 98 % of input data can be 
transmitted from the source node to the destination node for the input data of up to 
2Erlang. However, the throughput slowly drops to about 85 % and even to 70 % when 
the input traffic load increases to 2.5 and 3Erlang, respectively. Figure 8 shows that 
the throughput generally decreases as the input load increases. However, the 
decreasing rate is reduced as the resilience value increases. This is because the larger 
resilience value is, the greater is the load sharing when the primary path is either 
failed or overflowed.  

0.9

0.95

1

1.05

1.1

1.15

0.5 1 1.5 2 2.5 3 3.5 4

Input Load (Erlang)

D
el

a
y 

R
at

e

 = 0  = 0.5  = 1

 = 1.5  = 2

 

Fig. 9. Delay rate vs. Input load 



A Methodology on MPLS VPN Service Management with Resilience Constraints         131 

 

In Figures 9, we show the simulation results for the delay by input load ranging 
from 0.5Erlang to 4Erlang with the same simulation environment as in Figure 8. The 
delay rate is measured by simulation by changing the input load from 0.5 to 4Erlang 
for the resilience values of 0, 0.5, 1, 1.5 and 2. The delay rate is generally increases as 
the input loss increases. However, the increasing rate becomes smaller as the 
resilience values become larger. This is because with the increasing value of 
resilience, the data can be delivered more reliably. For the cases of resilience value 
larger than or equal to 1, the input data load can be equally shared among available 
backup paths. 

0.97

0.975

0.98

0.985

0.99

0.995

1

0.5 1 1.5 2 2.5 3 3.5 4

Input Load (Erlang)

S
rv

ic
e
 A

v
ai

la
b
ili

ty

hybrid

Rerouting

Protection

 

Fig. 10. Service availability vs. Input load 

In Figures 10, we show the variations of the statistical average of service. There are 
two general recovery mechanisms proposed for MPLS path management in IETF 
standard: protection and rerouting mechanisms. In protection mechanism, the backup 
path is always preserved in advance, while in rerouting, no backup path is preserved 
in advance. Our approach can be called a hybrid approach in the sense that backup 
paths satisfying the resilience constraint, i.e., ‘k-protected’, is established in advance, 
similarly as in protection mechanism, but with extension of provisioning of new 
backup paths satisfying the resilience constraints under multiple failure occurrences. 
In other words, when backup paths are also affected by the multiple failure 
occurrences, alternative backup paths are constructed, similarly as in rerouting 
mechanism.  

In order to compare the performance of the proposed approach with previous 
mechanisms described in IETF standards, we have assumed that a separate backup 
path is maintained for protection mechanism, which is corresponding to the case with 
resilience value of 1. For rerouting mechanism, it is assumed that a separate 
alternative path is being constructed when link failures occur in the primary path. We 
have measured by simulation the service availability for the three approaches: 
protection, rerouting, and proposed hybrid approach. The service availability is 
defined as the ratio of the total uptime for a LSP to the total duration of the LSP. As 
shown in Figure 10, the service availability of the hybrid approach is better that those 
of protection and rerouting approaches under varying input load conditions. Although 



J.-T. Park and M.-H. Kwon 

 

132 

the service availability of protection mechanism is almost similar to that of the hybrid 
approach, the service availability sharply drops when the input load increases beyond 
2.0. This is because that there would be more chance of link failures in the primary 
path as the input load increases, in which case most of input data traffic can not be 
delivered to the destination node.  

In comparison with the rerouting mechanism, the hybrid approach can provide 
better service availability than the rerouting mechanism. This is because the backup 
paths can be maintained with guaranteed resilience, while the rerouting mechanism 
should find the alternative backup paths every time a failure occurs. When multiple 
failures occur almost simultaneously, the rerouting mechanism may try to resolve 
each occurrence of a failure. In comparison with the protection mechanism, it is not 
possible for the protection mechanism to transmit the data if some components of the 
backup path fail, while in the hybrid approach, it can find a new backup path.  

Furthermore, the proposed hybrid approach can handle multiple simultaneous 
failures, while trying to find a feasible backup path. Although it is not shown in 
Figure 10, for the case where there are multiple failure occurrences which would not 
allow the construction of any backup path, the hybrid approach may immediately 
notice this worst-case scenario, and, may propose to find sub-optimal solution using 
some heuristics. However, the traditional rerouting mechanism may not notice the 
worst situation, and may try to continuously find the solution which may not exist at 
all, which may eventually result in the large service disruption. In summary, it is 
found that the hybrid approach could provide better service availability than those of 
protection and rerouting mechanisms for MPLS VPN path management. 

6   Conclusion   

In this article, we present the methodology for resilient path design and management 
for MPLS VPN service. We present methods which can dynamically configure the 
paths of MPLS VPN service satisfying the TE resilience requirement from the 
customers. We develop rules, testing conditions and algorithms for fast backup path 
construction which could make the MPLS VPN service to be available without 
disruption satisfying the resilience requirement. The simulation has been done to 
evaluate the various performance figures and service availability with respect to the 
resilience value. It shows that both delay and throughput can be increased as the 
resilience value increases. 

In the methodology of the dynamic management of BGP/MPLS VPN service, we 
measure the availability of paths by only taking into account the facts that it is 
working correctly or not. However, it is also possible to test the utilization of the 
components, and the availability of the paths can be measured by these factors, which 
is for further study area. In finding available backup paths, if the testing condition is 
not satisfied, there might not be backup paths, satisfying the resilience constraints. 
This requires heuristic methods, which is also a further study area which is under 
investigation. 



A Methodology on MPLS VPN Service Management with Resilience Constraints         133 

 

References 

1. IETF MPLS Working Group : http://www.ietf.org/html.charters/mpls-charter.html. 
2. Mannie, E., al, et.: Generalized MPLS Architecture :Internet Draft, draft-ieft-ccamp-

gmpls-architecture-07.txt. May 2003. 
3. Rosen, E., Rekhter, C. Y. et al. : BGP/MPLS IP VPNs. draft-ietf-ppvpn-rfc2547bis-04.txt. 

May 2003. 
4. Bates, T., Chandra, R., Katz, D., Rekhter, Y. : Multiprotocol Extensions for BGP-4. 

RFC2858. 
5. Tony Bogovic, Seminar 2 : MPLS Overview and Applications. Telcordia Technology. Feb. 

2002. 
6. Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V. and Swallow, G. : RSVP-TE 

Extensions to RSVP for LSP Tunnels. RFC 3209. December 2001. 
7. Jamoussi, B., Andersson, L., et al. : Constraint-Based LSP Setup using LDP : RFC 3212. 

January 2002. 
8. Park, J. T.: A Model of Resilience for MPLS/GMPLS Service Availability. Submitted to 

ISAS2004. 
9. Li, G., Wang, D., et al : Efficient Distributed Path Selection for Shared Restoration 

Connections. IEEE INFOCOM 2002. pp.140 – 149. 
10. Sharma, V. and Hellstrand, F.: Framework for Multi-Protocol Label Switching (MPLS)-

based Recovery. February 2003.  
11. Huang, C., Sharma, V., Owens, K. and Makam, S.: Building Reliable MPLS Networks 

Using a Path Protection Mechanism. IEEE Communications Magazine. March 2002. pp. 
156-162. 

12. Banerjee, A., Drake, Jet., El. : Generalized Multiprotocol Label Switching_An overview 
of Signaling Enhancements and Recovery Techniques. IEEE Communications Magazine, 
July 2001, pp. 144-151. 

13. Guangzhi Li, Jennifer Yates, Robert Doverspike and Dongmei Wang : Experiments in Fast 
Restoration using GMPLS in Optical/Electronic Mesh Networks. Postdeadline Papers 
Digest, OFC-2001. Anaheim. CA. March 2001. 

14. Doverspike, R. and Yates, J.: Challenges for MPLS in optical network restoration. IEEE 
Communications Magazine. Feb. 2001. pp. 89-96. 

15. Papadimitriou and Mannie, E.: Analysis of Generalized MPLS-based Recovery 
Mechanisms (including Protection and restoration). draft-ietf-ccamp-gmpls-recovery-
analysis-01.txt. May 2003. 



M. Malek et al. (Eds.): ISAS 2004, LNCS 3335, pp. 134–147, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Highly Available Location-Based Services in Mobile 
Environments 

Peter Ibach and Matthias Horbank 

Humboldt University, Computer Science Department, Computer Architecture and  
Communication Group, Rudower Chaussee 25, 12489 Berlin, Germany 

{ibach, horbank}@informatik.hu-berlin.de 

“We’re not lost. We’re locationally challenged.”
John M. Ford

Abstract. We show how to use Web Services standards for propagation, 
discovery, and composition of location-based services in mobile environments. 
To achieve semantic interoperability we express location information in XML 
using context-specific ontologies. The achieved interoperability allows for 
context-aware on-demand service composition making the composite service 
highly available and resilient to environmental dynamics and uncertainties.  

1   Introduction 

Location-based services (LBS) are services that utilize their ability of location-
awareness to simplify user interactions and adapt to the specific context. With 
advances in automatic position sensing and wireless connectivity, the application 
range of mobile LBS is rapidly developing, particularly in the field of geographic, 
telematic, touristic, and logistic information systems.  

However, present LBS are to a large extent incompatible with each other and 
unable to interoperate on location semantics. They are mostly bound to a specific 
technology reflecting the preferences of the service provider. Typically, proprietary 
protocols and interfaces are employed to aggregate the different system components 
for positioning, networking, content, or payment services. In many cases, these 
components are glued together to form a monolithic and inflexible system. If such a 
system has to be adapted to another technology, e.g., the change from GPS 
positioning to in-house WLAN or Bluetooth positioning, it has to be entirely 
reengineered. Due to the dynamic nature of mobile environments, available resources 
as well as achievable quality of service levels are incessantly changing. Thus, 
adaptivity – the ability of steady interoperation of variable resources under 
changeable connection conditions – becomes crucial for service end-to-end 
availability in mobile environments.  

Let us consider a position sensing service, for example, a satellite-based GPS. If a 
mobile device moves from outdoor to indoor environments, the signal will likely 
become unavailable and position sensing will fail. Without the location information 
expected from this subservice, composite services depending on it will become 



 Highly Available Location-Based Services in Mobile Environments 135 

unavailable as well. To arrive at seamless operation, on-the-fly switchover to an 
alternative position sensing service using a different technology is required. To 
choose from multiple possible position sensing services, the decision has to consider 
service availability, quality of service properties, and costs. In the near future, most 
mobile and wearable devices are expected to have multiple position sensing 
technologies at disposal, e.g., GPS, GSM, WLAN, and Bluetooth. Nevertheless, new 
technologies, like at present WiMax or RFID, are continuously emerging. Thus 
hardware devices and software components, their interfaces and architecture have to 
be able to deal with changing conditions to make mobile location-based services 
highly available.  

NOMADS Population

Transportation &
Telematic Systems

Mobile &
Wearable Devices

Infrastructure

Computers & 
Peripherals

Manufacturing

Building, 
Housekeeping & 
Home Entertainment

Smart
Items

Fig. 1. NOMADS – Networks of Mobile Adaptive Dependable Systems (for further 
investigations see [8]). High mobility and dynamics require systems’ self-reliance, context 
awareness, and adaptivity to accomplish dependable operation 

Generally, flexible and open standards are the key to enable interoperability and 
open the door for a prospering variety of new business ideas and services. Web 
Services Grid and Semantic Web standards are expected to overcome past hurdles by 
a universal standard for managing services and resource on the web. These standards 
might accelerate the next chapter of the electronic revolution. Frameworks such as 
NOMADS (see Fig.1) promise to deliver mobile, adaptive, and dependable 
interoperability, challenging numerous new applications and business opportunities. 

Here, we investigate applicability of Web Services Grid standards in the envisaged 
domain of location-based services in mobile environments and propose a generic 
model for improved flexibility and availability. Core strategy is the on-the-fly 
adaptation to a specific situation. This is accomplished by tracking contextual changes 
and context-aware on-demand composition of appropriate services.  

The paper is structured as follows: In Section 2 we summarize background and 
related work in the area of location-aware computing. In Section 3 we discuss the 
economic impact of location-based services, service-oriented architectures, and the 
challenges to be tackled. Section 4 describes the technical approach we are pursuing, 
demonstrates how it helps delivering improved mobility, adaptivity, and dependability 



136 P. Ibach and M. Horbank 

(we call these the MAD properties), and how location information can be processed 
semantically. Section 5 describes our implementation experiences and some use case 
scenarios and Section 6 concludes the results and gives an outlook to future work.

2   Background and Related Work 

While in the 60s and 70s mainframe computing flourished and in the 80s and 90s 
personal computing got predominant we are now entering the age of ubiquitous 
computing [20] where – in the near future – almost any device will have certain 
computation and communication power. Pervasive computing further emphasizes the 
expectation that computational devices and connecting infrastructure are getting more 
and more omnipresent. With the widespread of mobile and wearable devices capable 
of location sensing, lots of research has focused on location-based services [14] and 
location-aware computing [5]. A central problem in context-aware computing is the 
appropriate description of environmental characteristics [10]. 

Another technology leap is induced by Radio Frequency Identification (RFID). 
Through RFID labels, almost any device or item can be cost-effectively transformed 
into a “smart” information source. In conjunction with the electronic product code 
infrastructure (EPC Network), smart items will be capable of wirelessly telling who 
and where they are, what status they have, and which services they offer. An “Internet 
of things” [1] with billions and soon trillions of seamlessly interconnected devices is 
about to take over the era of traditional computers and computer networks.  

By these developments, information technology is taking a big step towards 
providing a comprehensive real-time picture of the physical world. Through the 
spatial organization of information together with location-based services and semantic 
interoperability, virtual and real spaces will tightly interconnect.  

Since the vast possibilities also involve misuse, security and privacy issues are 
accompanying the developments and receive growing attention. To ensure that 
humans are not overwhelmed by omnipresent and omnipotent technology, “Ambient 
Intelligence” [4] represents a vision of sensitive and responsive electronic 
environments putting humans in the centre of technological developments. 

Considering the question of how to organize the evolving number of interacting 
devices led to various approaches trying to exploit analogies from examples in nature. 
A variety of concepts emerged which are inspired by physical, biological, 
sociological, or economical analogies. Basic idea is to design and structure composite 
systems such that they are able to meet upcoming challenges by actions of its largely 
autonomous entities. Under the term “autonomic computing” IBM summarizes eight1

core “elements” [9] – comprising self-configuring, self-healing, self-optimizing, and 
self-protecting – that are intended to guide the development.  

Fundamental concept is the composition of systems by extensive reuse of 
commodity software/hardware components. Component-based software engineering 
[9] tries to extend paradigms of object-oriented software engineering such that 
components – in contrast to objects – can be adapted to the specific conditions of a 
run time environment without additional interventions (hot deployment). The access 

1  In current implementation, they have been compressed to four. 



 Highly Available Location-Based Services in Mobile Environments 137 

to a component is exclusively accomplished through its interface. Syntax and 
semantics of a component should be comprehensively described in its specification.  

Agents (also referred to as actors) are especially “intelligent” components that 
show improved adaptivity in dynamic environments through autonomous goal 
tracking, context sensitivity, mobility, reactivity and proactivity. This direction is 
pursued by agent-based software engineering [7, 13] and further extensions for 
business environments referred to as business agents or agentified enterprise 
components [17]. Those actors have negotiation capabilities, possess context models 
to adapt to different deployment contexts, and are able to deal with uncertainties that 
may arise from unforeseen changes and errors.  

To accomplish interoperability on higher levels of semantics, one has to agree on a 
suitable ontology which defines terminology and relations for each specific 
application area. A widely accepted ontology that models physical objects and their 
location is used in the Geographic Information System (GIS), standardized by the 
OpenGIS Consortium. GPS position sensing together with geocoding services for 
visualization of geographic information [15] enjoys growing popularity on mobile 
devices. Yet, seamless outdoor to indoor transitions, global scalability, and 
changeover to different services, e.g., providing different cartographic material, are 
usually not addressed. The Physical Markup Language of the EPC Network, 
standardized by the Auto-ID Center, is intended for product classification, but also 
allows for spatio-temporal annotations for object tracking and supply chain 
management. Moreover, the World Wide Web Consortium is extending the Resource 
Definition Framework to relate Web Content to its associated physical location. In all 
these attempts, however, expressiveness of location semantics is still in its infancy. 

3   Challenges and Expected Benefit 

Enterprise applications were initially developed on closed, homogeneous mainframe 
architectures. In the explosively growing heterogeneous landscape of IT systems in 
the 80’s and 90’s integration of intra- and inter-company business processes became 
one of the most important and most cost-intensive tasks of the IT economy. Due to 
missing or non-transparent standards many enterprises pursued integration by 
extremely expensive ad-hoc-solutions. With the spreading of the Internet and the 
increasing importance of electronic business, open Internet-oriented solutions have 
emerged. Enterprise-internal monolithic software was broken into smaller, 
autonomous, and flexible components. This enabled the access to services not only 
enterprise-internally, but along the whole value chain to suppliers, distributors, and 
customers. We characterize this observation as a shift from rigid systems to flexible 
service-based architectures, where open and flexible services are the basic building 
blocks (see Fig. 2). 

Grid computing is a service-based form of shared resource usage that is intended 
to make the access to computation power as simple and omnipresent as electric 
power supply. It extends peer-to-peer computing as well as cluster computing in a 
global scale in order to “enable the sharing, selection, and aggregation of geogra- 
phically distributed heterogeneous resources dynamically at runtime depending on 





 Highly Available Location-Based Services in Mobile Environments 139 

4   Adaptive Location-Based Services 

From the perspective of a mobile user, the environment is ever-changing as he moves 
from one location to another. As earlier explained, adaptivity to location 
characteristics is essential for mobile service availability. In our approach, adaptivity 
of a composite location-based service – we call these services Adaptive Location-
Based Services (ALBS) – is accomplished by choosing the appropriate chain of 
subservices for composition (see Fig. 3). 

Prerequisites are general discoverability, interoperability and composability of 
subservices through standardized communication protocols and directory services. In 
the Web Services standard, interoperable communication is accomplished by 
exchanging XML data over HTTP. But Web Services are not restricted to the WWW 
or a specific protocol. Rather, it is a promising solution for adaptive application 
synthesis in distributed, dynamically changing environments. The notion of Web 
Services goes beyond prescribed client-server communication. Emerging standards 
for directory services such as UDDI [19] or Web Services Choreography (e.g., 
BPEL4WS [2]) allow for dynamic discovery of services and composition of multiple 
Web Services to fully-fledged distributed applications. 

Consider a location-based service that requires some input, e.g., accurate position 
information or the user’s choice of payment. The user might present these data to the 
LBS manually. Likewise, this information might be the result of a preceding Web 
Service which, for example, reads the geographic position from an attached GPS 
device. In case of payment, information about the user’s choice could be sent to an 
accounting service which, for example, uses a direct debit authorization. For service 
composition it is not necessary to know how the accounting is actually performed or 
how access to the GPS device is implemented, as long as one can trust the responsible 
Web Services. Authorization and trust will be fundamental for the success of location-
based services and Web Services composition. Moreover, protecting privacy 
regarding the user’s trace of information is a severe issue. Further dangers of intrusion 
to take care of are service spamming, where undesired services are propagated, and 
service spoofing, where insecure services are offered under disguised identity. 
Ongoing developments in the Web Services Trust Language (WS-Trust) therefore 
accommodate a wide variety of security models. 

4.1   Using Web Services for ALBS Implementation 

We use Web Services standards to implement the appropriate selection of subservices 
and to process their composition. These comprise the service interface description in 
the Web Services Description Language (WSDL). In an interface description the port 
type specifies the service’s request/response-behavior. A service instance is accessed 
through a port. Each port has to bind to a port type and has to support additional 
binding information, e.g., the used protocol. In Web environments the Simple Object 
Access Protocol (SOAP) might be a primary candidate, but other protocols such as 
CICS (Customer Information Control System) or dependable message queuing can be 
utilized as well.  

For each application to be composed of subservices, a flow through required port 
types and optional port types guides the composition process. This flow can be 
specified using choreography languages (e.g., WSCL or BPEL4WS). Ongoing 





 Highly Available Location-Based Services in Mobile Environments 141 

accuracy of the location information. Extensions of position sensing services might 
be able to recognize direction, speed, and variance of movement. (WLAN and 
Bluetooth positioning base on signal strengths of different access points. For each 
position, these signal strengths exhibit a certain characteristics that can be 
translated into location information by a signal characteristics map. Since the 
signal strengths vary, the map needs periodic update. Nevertheless, coverage and 
accuracy of the positioning may be insufficient for some LBS. However, this way 
PDAs, laptops, or other mobile devices can locate themselves independently of 
GPS availability.) 

• Semantic location determination: Information about location semantics is offered 
by this port type. Input is the context-specific sensor data (containing geographic 
location, RFID numbers, available services, or other specific characteristics that  

• could be utilized to reason about the position). The response includes the semantic 
position according to a given ontology. 

• Content: This port type offers content for a given geographic or semantic location. 
It receives a message with the location information which then is processed. The 
returned message contains information (text, pictures, audio, or video if requested) 
about the given location. To process the location information semantically, some 
common ontology is required (see Section 4.4. for further investigations on 
location semantics). 

• Accounting: Accounting port type allows on-demand billing of services used. 

4.2   Run-Time Adaptation 

The sequence chart (see Fig. 4) shows the message sequence of service interaction. 
The setup in this example consists of a service instance supervising the application 
control flow, the registry, e.g., an UDDI-implementation, two ports connecting to 
position sensing services (a GPS service and a WLAN positioning service), and two 
content ports. The example indicates how the composite service remains viable if 
some of its ports (here, the GPS positioning service) become temporarily unavailable, 
and how on-the-fly switchover to a replacement service (here, a WLAN positioning 
service2) takes place.  

The first sequence (messages 1-8) shows a service request using the available GPS 
service: 

1. Search the registry for position sensing ports 
2. Registry returns a GPS-receiver service port 
3. Request position from returned port 
4. GPS-receiver returns position 
5. Search the registry for content port 
6. Registry returns port of Content Provider 1 
7. Request content from returned port 
8. Content Provider 1 returns content data, e.g., a city map in which the 

building is located 

2 Here, a connection switchover, e.g., from UMTS to WLAN connection, will probably occur. 
However, this is processed analogously and is not addressed in the Figure. 



142 P. Ibach and M. Horbank 

Fig. 4. Sequence chart of service interaction 

Before message 9 is being sent, possibly the mobile user is entering a building, 
where the GPS device cannot receive the satellite signal and therefore unregisters its 



 Highly Available Location-Based Services in Mobile Environments 143 

service from the registry. Supposing an in-house WLAN positioning service becomes 
available, the second sequence (9-16) shows the service request after this context 
change: 

9. Search the registry for position sensing port 
10. Registry returns port of WLAN-positioning service 
11. Request position from returned port 
12. WLAN-positioning service returns position 
13. Search the registry for content provider port 
14. Registry returns port of Content Provider 1 and Content Provider 2 
15. Supposing semantic information is available that indicates the user is inside 

the building, Content Provider 2 providing corresponding content will be 
prioritized and requested 

16. Content Provider 2 returns content data, e.g., a map that provides location-
based guidance inside the building 

As the sequence chart indicates, adaptivity results from context-sensitive service 
composition. Thereby, the messaging behavior of each subservice remains 
independent of context changes. This is possible because ports of the same port type 
can be interchangeably replaced without interfering with the ports’ WSDL-prescribed 
request/response-behavior.  

Traditional monolithic LBS typically do not provide this degree of context 
adaptivity (here, to switch to WLAN positioning in case the GPS becomes 
unavailable) without being explicitly designed for every possible change of 
interoperation. Furthermore, they hardly adapt to emerging technologies that were not 
foreseeable at design time. In contrast – provided that messaging behavior of new 
services remains compatible with the given type definition – ALBS can adapt to 
changing or newly emerging conditions without extra programming effort. 

4.3   Using ALBS in Mobile Environments 

The fundamental concept of the service-oriented paradigm is to enable uniform access 
to all resources via services – including mobile or embedded devices, and hardware 
resources, for example, GPS receivers or WLAN adapters. In dynamic environments, 
where network topology, connections, and bandwidth are unstable and connected 
devices may have limited resource power, this requires specific methods for service 
propagation, discovery, invocation, and processing: 

• WS-Discovery: The Web Services Dynamic Discovery (WS-Discovery) standard 
defines a multicast protocol to propagate and locate services on ad-hoc networks in 
peer-to-peer manner. It supports announcement of both service offers and service 
requests. Efficient algorithms (caching, multicast listening, discovery proxies, 
message forwarding, filtering, scope adjustment, and multicast suppression) keep 
network traffic for announcing and probing manageable. Thus, the protocol scales 
to a large number of endpoints.  

• Lightweight Services: For efficient invocation and processing of Web Services on 
embedded devices with limited processing and communication power, 



144 P. Ibach and M. Horbank 

“lightweight” services utilize specific real-time protocols, programming languages, 
scheduling algorithms, message queuing policies, or XML coding and parsing 
schemes.  

In our example, the mobile device multicasts its request to the devices within local 
reach and collects the service announcements. The GPS receiver announces a service 
for position sensing and the WLAN adapter announces two services, one for position 
sensing and one for connection (see Fig.3). These ports are stored in the local registry 
cache. Retrieved entries from the global registry are cached as well. To locate a 
service, the discovery service is instructed to retrieve the corresponding port type. 
Additionally, the discovery service can look for certain assertions to be satisfied. 
Thus, the ALBS application communicates with local services the same way it does 
with remote services. All services are propagated, discovered, and invoked by 
standard Web Services protocols. 

Fig. 5. The ALBS architecture allows for location-aware computing based on universal  
service-oriented communication

4.4   Semantic Location Information 

For semantic interpretation we distinguish the following LBS classes: Location-based 
services can be provided by some immobile unit, e.g., a museum or a botanical 
garden. Typically such immobile units provide stationary LBS which are fixed to a 
given location. A common problem is to semantically detect the location and find or 
filter stationary services related to that location. For example, a user’s movement in a 
museum can tell that he might be interested in information about a specific exhibition 
object (e.g., he moves to that object and then, while looking at it, stops moving for 
some seconds). A location-aware device then could request the assigned service. 

GPS
Positioning

WLAN
Connection

Local Registry

ALBS
Application

search local
services

local
message passing

MOBILE 
DEVICE

Content
Provider 1

Content
Provider 2

ENVIRONMENT

Registry
search

services

message
passing

register
service

RFID
Positioning



 Highly Available Location-Based Services in Mobile Environments 145 

Likewise, some immobile units may provide general LBS that are location-
independently accessible but require a location parameter. Examples are a regional 
weather forecasting service or a service that processes queries like “where is the next 
subway station?” Regarding mobile LBS, the location is a parameter of the behavior 
of a mobile device. Imagine a user who travels with his laptop. If the laptop 
recognizes the availability of a specific LAN connection, it could conclude where it is 
located (e.g., in the user’s office) and adapt its behavior (e.g., synchronize certain 
files). Finally, interdependent LBS require multiple related location parameters, e.g., a 
people finding service that guides mobile users to meet at some intermediate place. 
All these cases demand for appropriate semantic interpretation of location. 

Let us consider the following example of a mobile LBS in more detail: A user 
wants his mobile phone to automatically activate the hands-free speaking system 
inside a car or mute when inside a theatre. However, a cellular phone cannot tell from 
GPS coordinates or from its cell ID that it is inside a theatre. But if there is a service 
that translates the GPS coordinates or the cell ID to semantic location information like 
“this is a theatre” or “this is a place to be silent”, the “mute feature” can be automated. 
The Resource Description Framework (RDF) addresses these issues and may be used 
to accomplish such communication. 

For example, an extended position sensing service may return the semantic 
location “prater.theatres.berlin.de”. To know how to act on this location information, 
a service assigned to it might return the following RDF message indicating that 
mobile phones and other possibly “obtrusive” devices should be switched off. Since 
the theatre is an “ambient” place in the following ontology, the device can understand 
that it should mute: 

<rdf:Description about="urn://prater.theatres.berlin.de"> 
<rdf:type resource="urn://myontology.myID.de/Schema/theatre"/> 
<rdf:type resource="urn://myontology.myID.de/Schema/places/ambient"/> 
<t:Name>Prater</t:Name>
<t:DesiredCellPhoneActivity>Silent</t:DesiredCellPhoneActivity>
</rdf:Description>

Unfortunately, there are various ways to express such additional semantic location 
information. The device, therefore, not only must be able to access the ontology that 
is applicable, it moreover needs to know how to map this ontology to its decision 
alternatives. However, to the best of our knowledge, comprehensive ontologies 
widely accepted and suitable for broad semantic location processing are not available 
as yet. 

5   Case Study 

Currently, we are working on an adaptive location-based service prototype. It 
provides the basic functionality of a mobile information system for the “WISTA 
Adlershof Science and Technology Park” [21] in Berlin, where natural science 
departments of the Humboldt University are located as well. Based on the Emerging 
Technologies Toolkit (ETTK) available from IBM developerWorks, we provide part 
of the ALBS infrastructure. We are defining some basic port types (Content and 
Position Sensing) allowing all companies from the WISTA area to provide further 



146 P. Ibach and M. Horbank 

location-based information and services. Additionally, a web crawler will scan the 
regional websites for location information and, if location can be determined, assigns 
the website to that location. Geographic information and a geo-referenced map are 
supplied by the Geographic Institute of Humboldt University, which takes part in this 
case study. A widely available WLAN-infrastructure gives mobile devices access to 
remote services and allows the setup of WLAN-based position sensing services.  

Location-based service will also be available for “virtual travelers”. They explore 
the WISTA map on the Internet that visualizes location-specific information and 
stationary services. By point-and-click, it is possible to directly access these stationary 
LBS or to forward the specific position to some general LBS. That way LBS link 
virtual to physical spaces. For example, if a user is visiting the Internet site of a 
company, the company’s physical location will be determined and can serve as input 
for subsequent LBS. Vice versa there are LBS that link from physical to virtual 
spaces, e.g., one that processes instructions such as “show me the website of the 
restaurants located within 5 minutes walk”. In future, a position sensing service can as 
well determine the semantic position within the virtual space. For example, if position 
sensing detects that the user is visiting some product information site, it can take him 
to product-related offers, e.g., test reports or best price comparisons. 

6   Outlook and Conclusions 

We have shown how to flexibly compose Adaptive Location-Based Services (ALBS) 
with Web Services technology achieving high service availability. Further, we 
outlined how location information can be processed semantically. We anticipate that 
the methodology will be applicable to future context-aware computing in distributed, 
heterogeneous, and dynamic environments at great degree of interoperability – across 
various protocols, interfaces, programming languages, devices, connection lines, 
operation systems, platforms, enterprise boundaries, vendors, and service providers.  

We also expect that broad interconnection and seamless interoperability of 
processes and devices together with tight interconnection of physical and digital 
spaces will bring convergence of virtuality and reality, changing the way we think, 
work, and live. As public dependence on information systems will continue to rise 
and there will be insufficient human resources to continually support and maintain the 
computing/communication infrastructure, the vision of adaptive, maintenance-free, 
self-relying systems must become a reality. The goal will be to deliver MAD 
properties (Mobility, Adaptivity, and Dependability) at low cost and in intelligent and 
highly semantic manner, making it possible to enter the age of “subdued computing”, 
where the information infrastructure at best supports human computing and 
communication needs, but discreetly fades into the background. 

References 

1. Auto-ID Center: Creating an Internet of Things. www.epcglobalinc.org (accessed April 2004). 
2. BPEL4WS, Business Process Execution Language for Web Services, Version 1.1, 

www-106.ibm.com/developerworks/library/ws-bpel



 Highly Available Location-Based Services in Mobile Environments 147 

3. Buyya, R.: Economic-based Distributed Resource Management and Scheduling for Grid 
Computing. Ph.D Thesis, Monash University, Melbourne, Australia, April 2002 

4. European Symposium on Ambient Intelligence (EUSAI), www.eusai.net (accessed April 
2004) 

5. Hazas, M., Scott, J., Krumm, J.: Location-Aware Computing Comes of Age. IEEE 
Computer, 37(2):95–97, Feb 2004 

6. Hawaii International Conference on System Sciences, Value Webs in the Digital Economy 
Mini-Track, Hawaii, Jan 2005, www.value-webs.org 

7. Jennings N., Sycara, K. et al.: A Roadmap of Research and Development. Autonomous 
Agents and Multi-Agent Systems, 1(1):7–38, Jan 1998 

8. Malek, M.: The NOMADS Republic. International Conference on Advances in Infrastructure 
for Electronic Business, Education, Science, Medicine and Mobile Technologies on the 
Internet, Scuola Superiore G. Reiss Romoli (SSGRR), Telecom Italia, L’Aquila, Italy, 2003 

9. Kephart, J., Chess, D.: The Vision of Autonomic Computing. IEEE Computer, 36(1): 41-
50, Jan 2003 

10. Meissen, U., Pfennigschmidt, St., Voisard, A., Wahnfried, T.: Context- and Situation-
Awareness in Information Logistics. International Conference on Extending Database 
Technology (EDBT), Workshop on Pervasive Information Management, Heraklion, 
Greece, March 2004 

11. Milanovic, N., Richling, J., Malek, M.: Lightweight Services for Embedded Systems. 
IEEE Workshop on Software Technologies for Embedded and Ubiquitous Computing  
Systems (WSTFEUS), Vienna, Austria, 2004 

12. Müller, P., Stich, Ch., Zeidler, Ch.: Components @ work: Component Technology for 
Embedded Systems. 27th Euromicro Conference, Warsaw, Poland, Sep 2001. 

13. Papazoglou, M.: Agent-oriented Technology in Support of E-Business: Enabling the  
Development of “Intelligent” Business Agents for Adaptive, Reusable Software. 
Communications of the ACM, 44(4):71–77, April 2001 

14. Rao, B., Minakakis, L.: Evolution of Mobile Location-based Services. Communications of 
the ACM, 46(12):61-65, Dec 2003 

15. Reichenbacher, T. : Mobile Cartography – Adaptive Visualisation of Geographic 
Information on Mobile Devices. Dissertation submitted at the Institute of Photogrammetry 
und Cartography, Technical University, Munich, 2004 

16. Schwan, K., Poellabauer, Ch., Eisenhauer, G., Pande, S., Pu, C.: Infofabric: Adaptive 
Services in Distributed Embedded Systems. IEEE Workshop on Large Scale Real-Time 
and Embedded Systems (in conjunction with RTSS 2002), Austin, TX, Dec 2002 

17. Sutherland, J., van den Heuvel, W.-J.: Enterprise Application Integration and Complex 
Adaptive Systems. Communications of the ACM, 45(10):59–64, Oct 2002 

18. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-
Wesley, 2003 

19. UDDI, Universal Description, Discovery and Integration of Web Services,www.uddi.org  
20. Weiser, M.: Some Computer Science Problems in Ubiquitous Computing. 

Communications of the ACM, 36(7):74-83, July 1993 
21. WISTA Adlershof Science and Technology Park, www.wista.de 



On Enhancing the Robustness of
Commercial Operating Systems�

Andréas Johansson, Adina Sârbu, Arshad Jhumka, and Neeraj Suri

Department of Computer Science,
Technische Universität Darmstadt, Germany

{aja, adina, arshad, suri}@informatik.tu-darmstadt.de

Abstract. A ubiquitous computing system derives its operations from
the collective interactions of its constituent components. Consequently,
a robust ubiquitous system entails that the discrete components must be
robust to handle errors arising in themselves and over interactions with
other system components. This paper conceptually outlines a profiling
framework that assists in finding weaknesses in one of the fundamental
building blocks of computer based systems, namely the Operating System
(OS). The framework allows a system designer to ascertain possible error
propagation paths, from drivers through the OS to applications. This
significantly helps enhance the OS (or driver/application) with selective
robustness hardening capabilities, i.e., robustness wrappers.

1 Introductions: The Ubiquitous Computing Perspective

A ubiquitous computing (UC) environment harnesses the collective capabilities
of diverse computational components via dynamic resource management as war-
ranted in mobile, networked and heterogeneous system environments. The utility
of such UC systems arises only if adequate robustness in the UC infrastructure
exists for it to provide for dependable service delivery. It is evident that achieving
an acceptable level of trust in such consolidated systems also necessitates corre-
sponding design methods for evaluating (and forecasting) how perturbations in
the system affect the services provided. Such perturbations could arise as device
defects, in UC component interactions, bugs in software etc. For UC components
themselves, the aspects of heterogeneity and mobility translate to the problem
of not knowing at design time the precise characterization of their operational
environment(s). The problem is further complicated in that many of the devices
are too deeply embedded to be modifiable. However, during deployment, (robust-
ness) profiling of the system is viable. This will give rise to suggested locations
of robustness gaps (hence, of enhancements) within the system. However, owing
to the dynamic nature of UC, profiling the overall system is not viable. Thus,

� We appreciate the inspration & insights from Dr Martin Hiller and the funding
support of Microsoft Research through the Innovation Excellence Program.

M. Malek et al. (Eds.): ISAS 2004, LNCS 3335, pp. 148–159, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



On Enhancing the Robustness of Commercial Operating Systems 149

we propose to perform a two-level profiling: (i) profiling the platform, includ-
ing components that will be long-term present in the system (middleware, OS,
drivers, HW etc) (ii) profiling the applications, which continually change over the
operation of the system. The problems with equipping the system with added
capabilities during run-time or deployment include (a) not knowing which errors
to protect against, (b) not knowing where to add enhancements in the system,
and (c) how to design effective and efficient wrappers.

1.1 The Role of OS: Paper Objectives

Targeting the OS as a key building block in any UC system, OS robustness hard-
ening is a fundamental driver for providing robustness of the systems built upon
them. The OS manages the hardware resources available and acts as a supplier
of services for applications through programming interfaces. A potential prob-
lem for any OS is that it must be able to handle diverse hardware resources
and applications. The risk of robustness gaps in the OS is apparent and the
need for robustness enhancements exists. Naturally, adding robustness enhance-
ments comes as a cost trade-off with other system properties, e.g., performance,
determinism etc. A trade-off analysis needs span the need for enhancements
(wrappers) and their consequent properties (coverage, timing etc).

As the overall goal is to prevent application failure, the interactions across
application and OS are key. Owing to the dynamic nature of UC, the information
needs to be categorized into two parts: (i) an OS profile, and (ii) an application
profile. These profiles will aid in identifying vulnerabilities in the system, thereby
guiding the effective placement of wrappers in the system. Thus, our research
objectives, to facilitate development of a systematic robustness process, i.e.,
placement and compositions of wrappers in an OS span the following themes:

– A profile of possible OS vulnerabilities based on system error propagation.
– Application profiles, including (a) criticality of the applications, (b) the ap-

plications use of the OS, and (c) sensitiveness to robustness gaps in the OS.
– Error detection mechanisms ranging in type, size and complexity depend-

ing on their placement. Estimations of the properties of the detectors (e.g.,
completeness, accuracy, overhead in performance, size, cost).

– Error correction mechanisms following error detection; ranging from halting
the system to performing advanced recovery.

– Assessment and tradeoffs - effectiveness & cost - analysis framework.

This paper focuses on the first two problems, i.e., to develop systematic meth-
ods for OS profiling. Profiles provide information on where errors in the OS are
more likely to appear and cause damage. The purpose is to determine robust-
ness gaps in the OS that can be used to guide locating and constructing ef-
fective robustness wrappers. We discuss the relevant profiling process and their
experimental assessment. The result of this profiling will invariably depend on
the errors considered. We specifically intend to address errors occurring in OS
drivers and their impact on services the OS provides for applications.



150 A. Johansson et al.

1.2 Robustness Hardening: Related Work

Software profiling represents the process of assessing the data flow properties
within the software structures. A common type of profiling is determining where
the execution time of a program is spent. Such profiling can locate performance
bottlenecks and even design errors in a program. Other profiles might tell the
programmer which functions in the OS are used and the relative time spent
performing them, e.g., the strace utility for UNIX-like systems, which profiles a
program’s use of the OS by showing the system calls made and the signals used.

In our EPIC framework (Exposure, Permeability, Impact and Criticality)[9]
static modular SW (fixed set of modules that interact in a predefined manner),
was profiled for error flow to ascertain the most effective placement of wrappers.
The framework (and the supporting experimental tool PROPANE [8, 7]) focused
on profiling the signals used in the interaction between modules. The profiling
consisted of both error propagation and effect profiles. Using the permeability,
and exposure metrics, propagation profiles reveal information on where errors
propagate through the system and which modules/signals are more exposed to
propagating errors. The error effect profiles are used to cover the cases where an
error is unlikely to occur, but potentially has a high impact on system output.
The software model for EPIC is static software; this makes it possible to find
all communication paths in the system and then profile accordingly. In our OS
themed work, the emphasis is on dynamic SW interactions. Also the set of appli-
cations is not generally known, all possible interaction paths (and consequently
error propagation paths) are not known a priori.

In [5] errors in C-libraries were studied. A tool called HEALERS was de-
veloped which automatically tests (using fault injection) the library functions
against their specification and generates wrappers to stop non-robust calls to
be made. This approach differs from our profiling strategy since it only focuses
on robustness in library functions. We are more interested in how errors can
propagate in the system, thus allowing us to choose more than one possible lo-
cation for wrappers (OS-application or OS-driver interface). However, the type
of errors proposed in HEALERS are similar to the ones considered in our work.

A related approach is used in Ballista [4, 3]. Here, OS interfaces are tested
with a combination of correct and incorrect parameter values and the behavior
of the OS categorized according to a failure scale, ranging from “OS crash” to
“no observation”. Using this relatively simple approach, this method managed
to find a number of robustness flaws (crashed or hung OS’s) in both commercial
and Open Source OS’s.

Both HEALERS and Ballista are different from our proposed approach as
they study the effect of malfunctioning applications on the OS whereas our
method considers the effect of malfunctioning drivers on the OS. Both of these
areas are important and they should be seen as complementary perspectives.

A fault injection based approach was used in [1], where the behavior of micro-
kernel based OS’s in presence of faults was studied. Faults were injected in both
the memory of the kernels and in parameter values in calls to kernel primitives
by applications. The effects on applications were studied along with error prop-



On Enhancing the Robustness of Commercial Operating Systems 151

agation between the kernel modules. This study differs from ours as we consider
a constrained model of the OS, where internal communication details are not
accessible. Also the errors considered are different. We focus on errors occurring
in drivers and not in applications or internal kernel errors.

Nooks [15, 14], focuses on errors in the driver subsystem considering that
drivers are a primary source of OS failures. A new subsystem layer is defined
in which kernel extensions (like device drivers) can be isolated in protection
domains. A driver executing in a protection domain has limited possibilities
of corrupting kernel address space and objects. Nooks provides good coverage
for many software and hardware faults occurring in extensions at the price of
high execution overhead (up to 60% slowdown for a web server benchmark).
Nooks focuses on isolating drivers from all errors impacting the OS. However,
we focus on data level errors and find out which specific errors actually propa-
gate and then protect against these. Nooks also requires a white box approach
unlike our black box model of SW. Both methods are useful for malfunction-
ing drivers but they have different properties such as coverage and perfor-
mance.

2 System and Error Model

Our intent is to develop a profiling framework applicable to diverse OS’s. Thus,
we utilize a generic model of a computer system, comprising of four major layers;
hardware, drivers, OS and applications, see Figure 1. Each layer supplies a set
of services to the next layer. For us, a service is typically a function call, i.e.,
for drivers it is an entry point in the driver and for the OS it is the system call
or library functions. We say that a set of services makes up an interface, for
instance a driver interface.

We do not assume any specific hardware architecture (CPU, disks, peripheral
devices etc.), as long as the hardware layer contains all devices needed to support
the remaining layers of the system.

The driver layer is responsible for handling the interaction between the hard-
ware and the OS. Drivers are SW programs that are generally specific to a
certain piece of hardware and OS. The system has a set of drivers D, denoted
d1, d2, · · · , dD. Each driver provides a set of services to the OS.

In the OS layer, we also include shared libraries that exist in the system. We
include them in the OS layer as it reflects the point of view of a programmer, i.e.,
the libraries support functionalities that the programs need, very much the same
as the OS. The OS provides a set of services (OS services), S = {si : i ∈ [1, S]},
to be used by the applications.

The top layer is the application layer, where the programs execute perform-
ing some specific task for a user. Applications make use of OS resources either
directly or through the use of libraries. The services provided in S may selec-
tively be used by a certain application, i.e., each application uses a subset of S.
Each application, APP k, uses Mk of the interfaces provided by the OS. Thus we
define the set of interfaces that APP k uses, as: Pk = {ASi ∈ S used by APPk}.



152 A. Johansson et al.

...

OS & Libraries

s
1 ... ...

APP1

AS
b

...
AS

M1
AS

a

d1 d2 dD

s
2

s
3

s
i

s
k+1

s
S-1

s
S

APPN

AS
b

...
AS

MN
AS

a

... ... ...

...

...
... ...

Operating System Layer

Applications layer

Driver Layer

Hardware Platform Layer Hardware

Fig. 1. General System Model

In this work we consider a black box SW model, i.e., we assume no knowledge
about the components in the respective layers but only their interface specifica-
tions. They are supplied in binary form (for SW) and can be executed on a given
hardware platform. We do not make any assumption constraining the behavior
of any component when it is subjected to errors/stresses. Such stress conditions
could be heavy load on a component, misuse of its interface or resource depletion.

2.1 Error Model

Focusing on a black-box model of the system, the only place where monitor-
ing/wrapping can take place is at the interfaces between the layers in the system.
We define two major interfaces, between the OS and the drivers and the OS and
applications. We consider data level errors occurring in the OS-driver interface
as our primary error model. Recent studies have demonstrated that drivers are a
major source of OS failures [2, 15, 12]. This arises as they are often not tested as
rigourously as the OS kernel; they may have been designed external to the OS
development team, lacking complete details of the system; and they may also
be affected by malfunctioning hardware. Drivers represent a large part of an OS
package in sheer size which further warrants their focused consideration (as the
number of expected faults generally increases as the size increases). We focus on
data level errors as they are possible to use with a black box system. They also
represent a set of detectable errors, i.e., one can define detectors in the form of
assertions to detect them.

In other robustness studies different fault/error models where used, mostly
bit-flips in parameter values and/or data and code memory areas of programs
[7, 1, 6]. Instead, we focus on data level faults at interface levels as they best
represent actual SW errors.

A data level error implies that the value of the data communicated through
the interface is “erroneous”, i.e., not the expected value according to some om-



On Enhancing the Robustness of Commercial Operating Systems 153

niscient viewer. Thus, the “state” of the program changes, and this error prop-
agates to the OS causing subsequent errors. To simulate data errors, we specif-
ically change the values of parameters used in the targeted interface. The type
of error injected is decided by the type of the parameter used. It is important to
note that the chosen error model and its representativeness of actual OS errors,
fundamentally affects the relevance of any obtained results.

3 Measures of Error Propagation

The purpose of a profiling framework is to outline SW characteristics for a
designer. The desired characteristic also drives the method used to gather data.
Our focus is on effective location of OS wrappers to handle driver errors. Thus,
we target determining the specific drivers that have a higher likelihood of error
propagation. Similarly, on error occurrence, to establish which OS services are
more exposed to these errors.

The final goal of our profiling is to estimate the impacts errors have on the
services provided by applications. One problem is that profiling with respect to
a certain set of applications running on the system will not give the same result
as a different set of applications. The way applications use the OS and their
importance will influence the results of the profiling. To capture this distinction
we propose to use a separate profile for an application’s use of the OS. This
profile must include information revealing which OS services the application
depends upon and notions of each service importance to the application (some
are most likely more important for the continued functioning of the application
than others). To analyze a system with more than one application, with varying
importance, priorities must be established across them. This can then be used
when the assignment of wrappers is made.

3.1 Operating System Profiles

The OS profiles consider how errors in drivers spread through the OS to its
services for applications. These profiles are naturally specific to an OS and its
drivers. The first measure (Service Error Permeability) defines the probability of
errors propagating through the OS. This measure is used to ascertain which OS
services are more susceptible to propagating errors (OS Service Error Exposure)
and which drivers are more likely to spread them (Driver Error Diffusion).

Service Error Permeability. The goal of OS profiling is to characterize how
errors in drivers influence the OS services provided. We start by defining the
service error permeability, P j,k for an OS service sj ∈ S and a driver dk ∈ D.

P j,k = Pr (error in sj |error in dk) (1)

Eq. 1 describes the relation of one driver to one OS service. This measure
gives an indication of the permeability of the particular OS service, i.e., how
’easily’ does the service let errors in the driver propagate to applications using



154 A. Johansson et al.

it. A higher probability naturally means that either (a) the driver needs to be
enhanced to make sure that it does not produce errors, or (b) some detection (and
recovery) is needed in the application or elsewhere to handle errors propagating.

OS Service Error Exposure. The OS error permeability considers discrete
drivers on a stand-alone basis. To ascertain which OS service is the most sensi-
tive to errors propagating through the OS, then more than one driver needs to
be considered. We use the measure OS error permeability, to compose the OS
Service Error Exposure for an OS service sj , namely Ej :

Ej =
∀dk∈D∑

P j,k (2)

For Ej we consider the set of all drivers, D. If one driver does not affect a
service, for instance it is not at all used by that service, then the Service Error
Permeability will be zero and thus should not affect the OS Service Error Expo-
sure. The OS Service Error Exposure gives an ordering across OS services (given
that more than one service has been tested and have service permeability values)
which orders services based on their susceptibility to errors passing through the
OS. With this measure the tester can focus attention to particular services that
may require more work or as a means to place wrappers.

Driver Error Diffusion. One might not only be interested in finding out which
services are more exposed to errors but also which driver is spreading them the
most, i.e., which driver, if acting faulty, has the potential of spreading errors the
most in the system. To find these drivers we define a measure that considers one
particular driver’s relation to many services, Driver Error Diffusion, Dk, for a
driver dk ∈ D set of services:

Dk =
∀sj∈S∑

P j,k (3)

The Driver error diffusion also creates an ordering across the drivers. It ranks
the drivers according to their potential for spreading errors in the system. Note
that we do not try to test the drivers per se, so this measure only tells us which
drivers may corrupt the system by spreading errors. It is actually a property of
the OS and not the drivers.

3.2 Application Profile

To estimate the effect of errors in OS services, we need to establish the appli-
cations usage of these services, specifically (a) which services are invoked and
(b) their respective “importance”. The importance of the service is defined with
respect to how critical it is to the continued functioning of the application. If an
error in an OS service always causes the application to crash, we say that this OS
service is important to the application. On the other hand, if it does not have any
effect on the application, because the application has built-in error correction,



On Enhancing the Robustness of Commercial Operating Systems 155

it is of no importance. The importance ij , 0 ≤ ij ≤ 1 of an OS service sj ∈ Pk

is defined as the probability that given an error in an OS service, it causes the
application APPk to fail. Ak is a set of tuples, (si, ii). For each OS interface
si ∈ Pk used by the application there is one and only one such tuple. Each tuple
includes the service itself and the value ii which describes the importance of the
service to the application. The application profile can and should be constructed
before the system is deployed, i.e., not during run-time.

Ak = {(si, ii) : si ∈ Pk} (4)

A third parameter of interest is the criticality of the application. If there is
more than one application running on the system, some of them might be more
important than others. We then say that it has a higher degree of criticality.
For comparing profiles across applications we need to know if adding wrappers
to “help” a certain application is more important than another application. In
EPIC [9] a scale from 0 to 1 was used for weighing the output signals according
to their criticality. 1 indicated the highest possible criticality and a 0 indicated
that the output signal is non-critical. A similar scale is used here too, indicating
a range from non-critical to highly critical. A criticality value, C is thus assigned
to every application APPk, 0 ≤ Ck ≤ 1.

3.3 Application Service Exposure

The Service Error Exposure and the Application profile together determine how
one application is affected by errors occurring in drivers. This can be used to es-
tablish wrapper locations, given a set of drivers and applications. Potentially this
trade-off can be made online (if applications are shipped profiles) as applications
comes (and leaves) the system.

SEk = Ck ·
∀si∈Ak∑ (

Ei · ii
)

(5)

Eq. 2 & 4 aid in predicting how an application will react to errors propagating in
the system. The service exposure composes the error permeability profiles with
the application profiles, to predict the behavior of the application. For an ap-
plication APPk, given the profile Ak and the corresponding service propagation
values. The values of the application error exposures are used to create a relative
ranking of applications and also the wrapping priority.

4 Experimental Evaluations

To make use of the analytical framework presented in the previous section, values
for the profiles must be obtained. Code inspection analyses, expert analyses, bug
reports/error logs and fault injection (FI) experiments are all possible approaches
in this respect. We have chosen FI as its utility has been established (and also
used in the EPIC framework using the PROPANE tool [8, 7]); it is also usable



156 A. Johansson et al.

at design time (in contrast to bug reports and error logs) and it can be used
without the full source code availability.

As indicated in Sec. 3 the only measure that needs to be experimentally
estimated is OS Error Permeability, P j,k, as both OS Service Error Exposure and
Driver Error Diffusion can be derived from this measure. To get an experimental
estimation of P j,k we will inject faults in the interface between driver dk and the
OS and monitor the result of executions of service sj by writing an application
that uses this service. We estimate the error permeability as the ratio of detected
errors, ndetected at the service level to the number of injected errors ninjected.

P i,j
est =

ndetected

ninjected
(6)

The values of Ej
est and Dj

est can be calculated using P i,j
est using Eq. 2 & 3.

Naturally not all application cause usuage of all drivers, or all of their services,
so the FI experiments will be limited to the driver services actually used. Eq. 6
requires detecting that an error has actually propagated. There are several types
of outcomes from a FI experiments and they can be classified in different classes.
We use a failure mode scale similar (but not the same) to the one used in [3] as:

– Error propagated, but still satisfied the specification of the service
– Error propagated but violated the specification of the service
– The OS crash/hung due to the error

For the first class it must be clear what is meant by a specification. In this
work we consider the specification given to a programmer for the OS. This can
be for instance man files for Linux/UNIX or the help sections for a Windows
computer. An example of an outcome that will end up in this class is (a) when
an error code or exception is returned that is a member of the set of allowed
codes for this call, or (b) if a data value was corrupted and propagated to the
service, but did not violate the specification.

The second class contains those outcomes where the result is violating the
specification of the service. For instance returning a string of certain length
when another parameter specifying the length holds a different number. Raising
an unspecified exception or returning an unspecified error code also ends up
in this class. If the application hangs or crashes but other applications in the
system remain unharmed, they end up in this class as well.

If the OS hangs or crashes, no service progresses. This state can be detected
by an outside monitor. The difference between the classes is that the crash
usually produces some form of dump, indicating that the OS has crashed and
some additional information. Currently we do not separate these classes, but a
designer may choose to do so.

Apart from the failure modes defined above, one more outcome is possible,
namely No Failure, i.e., no failure is observed at the OS service level. The error
might be dormant within the system, but in order to limit the time to perform
the experiments a timeout will be defined after which the error is considered not
to have propagated.



On Enhancing the Robustness of Commercial Operating Systems 157

4.1 Inserting Probes

Sec. 3 outlines the need to facilitate monitoring between the system layers, see
Fig 1. Thus, we need to insert probes between the application and OS layers and
between the OS and drivers layers. These probes are needed to (a) monitor the
communication between the layers in the system and (b) for actually inserting
perturbations in this communication, i.e., simulating the occurrence of errors.
The first case, can be achieved simply by writing special purpose applications
which sole purpose is to actively use the services provided by the OS. To achieve
the latter monitoring we design a new driver that is loaded instead of the driver
which we want to monitor/wrap. The needed “wrapping driver” is to first load
the existing driver and then set up all data structures. Then it passes on any
calls from the OS to the real driver and the result back to the OS. None of
the methods interfere with our intent to use black-box methods since it does
not involve modifications of the OS and/or the existing applications or drivers.
Some reconfiguration may be needed but access to source code is not required.

4.2 Estimating Application Profile

To obtain the application service exposure presented in Sec. 3.3 (using Eq. 2
and 5) we need to experimentally derive the application profile Ak and the error
permeability values for each driver P j,k. The application profile is derived using
a profiling tool that executes the application and produces a list of calls made
to the OS. The calls are matched against S to produce Ak. For each interface
that one application uses, an importance value must be assigned. The impor-
tance value ii can be derived using a tool that injects faults in the output of
system calls made by the application. Calls are intercepted by additional wrap-
per layer, the actual call is made to the OS and the return value can then be
altered, i.e., an error can be inserted and the result is passed on to the OS. A
similar approach was used for the Fuzz tool where UNIX utilities were fed with
random input strings and their robustness depended on their response to these
streams [11]. Another similar approach was used for Windows NT applications
in [13]. The results from a similar tool can be used to assign the importance
values.

Finally the criticality value must be assigned. This value represents the crit-
icality of an application relative to other applications. It is used to bias the ap-
plication service profile towards the applications that are of higher importance.
This value is assigned by the profiler and it depends on the set of applications
present. Ck is a value between 0 and 1, where 1 indicates high criticality.

5 Discussion and Future Work

As noted in Sec. 3, the profiles presented will only provide a relative ordering
across OS services, drivers and applications. To get real values for the proba-
bilities of real errors occurring we need to know precise nature and the arrival
rate of real errors. However, our method is targeted at placement of wrappers.



158 A. Johansson et al.

It illustrates to the profiler which services are more exposed to errors and thus
require wrapping. Note that this is always an estimation based on the proba-
bilistic nature of testing. Additional knowledge about the system can be used
to complement the profiling. For instance, if empirical knowledge exists about
the “quality” of different drivers, this can be used in the profiling to exclude
certain drivers from the profile or weigh their scores so that their impact is
reduced.

To be able to decide, with the help of the profiles, if more resources should
be spent within the system on adding wrappers, some notion of robustness level
is needed. We need methods for determining when enough wrappers have been
added to the system. Possible heuristics can entail removing all potential crashes
of the system and then one by one removing the less severe errors until a requisite
number have been removed incrementally.

Another issue that may impact the location of wrappers is the wrappers
themselves. Each wrapper comes with an associated cost, in size and overhead.
The cost-efficiency trade-off is part of our intended future work, as well as the
actual design and evaluation of wrappers. For evaluating wrappers, important
parameters include the completeness and the accuracy, i.e., how many of the real
errors are detected and how many mistakes are made. Also, the more complex
a wrapper is, the higher its execution cost is. A coverage versus performance
trade-off is an essential consideration.

A desired property of wrappers is to be able to generate them during run-time.
When an application is loaded for execution, its associated profile is composed
with the OS profile to find out if the current placement of wrappers in the system
is optimal. We therefore need both the means to do the trade-off during run-time
as well as the means to instantiate and deactivate wrappers without interfering
with the functioning of the rest of the system.

A limitation of our approach is that dependencies between the application and
the OS might exist that we currently do no cover. For instance we do not consider
the order in which calls are made by an application to the OS. The ordering of
calls, with respect to errors, might have an impact on the resulting behavior
of the application. Investigating such dependencies and their implications for
wrapper placement is part of future extensions for our work.

When determining if an error propagated, one needs to know what con-
stitutes an error for a service. This information can (ideally) be derived from
the specification of the service. This is not always possible due to the lack of
or incompleteness of the specifications given. In the past, many fault injection
experiments have utilized a so called golden run, i.e., a test program is exe-
cuted without faults and the outcome is then compared with one run with faults
presents to find deviations, i.e., errors. For OS’s creating a golden run is non-
trivial given the non-determinism in scheduling etc. One option would be to
restart the system before every experiment and then conduct the tests (golden
runs as well as FI experiments). Another option would be to run several tests
without faults and use a mean behavior as the golden run.



On Enhancing the Robustness of Commercial Operating Systems 159

6 Summary

Overall, the proposed profiling framework described in this paper aids a designer
to effectively enhance the OS with error protection wrappers. By studying how
errors propagate from drivers through the OS, potentially exposed OS services
can be identified. Combining this with knowledge on the dependencies between
the OS and an application, a suggested placement of wrappers can be obtained.

References

1. J. Arlat et al. Dependability of COTS Microkernel-based Systems. IEEE Trans.
on Computers, 51(2):138–163, 2002.

2. A. Chou et al. An Empirical Study of Operating System Errors. In Symposium on
Operating Systems Principles, pp. 73–88, 2001.

3. J. DeVale and P. Koopman. Performance Evaluation of Exception Handling in I/O
Libraries. In Proc. DSN, pp. 519–524, 2001

4. J. DeVale and P. Koopman. Robust Software - No More Excuses. In Proc. DSN,
pp. 145–154, 2002

5. C. Fetzer and Z. Xiao. An Automated Approach to Increasing the Robustness of
C Libraries. In Proc. DSN, pp. 155–164, 2002

6. W. Gu et al. Characterization of Linux Kernel Behavior Under Errors. In Proc.
DSN, pp. 459–468 , 2003

7. M. Hiller, A. Jhumka, and N. Suri. PROPANE: An Environment for Examining
the Propagation of Errors in Software. In Proc. of ISSTA, pp. 81–85, 2002

8. M. Hiller, A. Jhumka, and N. Suri. An Approach for Analysing the Propagation
of Data Errors in Software. In Proc. DSN, pp. 161–170, 2001

9. M. Hiller, A. Jhumka, and N. Suri. EPIC: Profiling the Propagation and Effect of
Data Errors in Software. in IEEE Trans. on Computers, pp. 512-530, May 2004

10. C. Michael and R. Jones. On the Uniformity of Error Propagation in Software. In
Proc. of COMPASS, pp. 68–76, 1997

11. B. Miller et al. An Empirical Study of the Reliability of Unix Utilities. CACM
33(12):32–44, 1990

12. B. Murphy and B. Levidow. Windows 2000 Dependability. In Proc. of the Work-
shop on Dependable Networks and OS, DSN, pp. D20–28, 2000

13. M. Schmid et al. Techniques for Evaluating the Robustness of Windows NT Soft-
ware. In Proc. of DARPA Information Survivability Conference & Exposition,
volume 2, pp. 1347–1360, 2000

14. M. Swift et al. Nooks: An Architecture for Reliable Device Drivers. In Proc of the
Tenth ACM SIGOPS European Workshop, pp. 101–107, 2002

15. M. Swift et al. Improving the Reliability of Commodity Operating Systems. In
Proc of SOSP, pp. 207–222, 2003



A Modular Approach for Model-Based
Dependability Evaluation of a Class of Systems

Stefano Porcarelli1, Felicita Di Giandomenico1,
Paolo Lollini2, and Andrea Bondavalli2

1 Italian National Research Council,
ISTI Dept., via Moruzzi 1, I-56124, Italy

{porcarelli, digiandomenico}@isti.cnr.it
2 University of Firenze, Dip. Sistemi e Informatica,

via Lombroso 67/A, I-50134, Italy
{lollini, a.bondavalli}@dsi.unifi.it

Abstract. Modeling for dependability and performance evaluation has
proven to be a useful and versatile approach in all the phases of the sys-
tem life cycle. Indeed, a widely used approach in performability modeling
is to describe the system by state space models (like Markov models).
However, for large systems, the state space of the system model may
result extremely large, making it very hard to solve. Taking advantage
of the characteristics of a particular class of systems, this paper develops
a methodology to construct an efficient, scalable and easily maintainable
architectural model for such class, especially tailored to dependability
analysis. Although limited to the class considered, the proposed method-
ology shows very attractive because of its ability to master complexity,
both in the model design phase and, then, in its solution. A representa-
tive case study is also included.

1 Introduction

Analytical and simulative modeling for dependability and performance evalu-
ation has proven to be a useful and versatile approach in all the phases of
system life cycle. During design phase, models give an early validation of the
concepts and architectural choices, allow comparing different solutions to high-
light problems within the design and to select the most suitable one. Dur-
ing the operational life of the systems, models allow to detect dependability
and performance bottlenecks and to suggest solutions to be adopted for future
releases.

The model-based evaluation method has gained wide applicability and usage
since a few decades. However, to keep pace with modern applications, model-
ing methodologies need to evolve towards more and more efficient solutions. In
fact, although building models of simple mechanisms may be easy, the overall
description of critical complex systems accounting at the same time for all their
relevant aspects is not trivial at all: the information explosion problem remains
the major difficulty for practical applications. To successfully deal with large

M. Malek et al. (Eds.): ISAS 2004, LNCS 3335, pp. 160–174, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Modular Approach for Model-Based Dependability Evaluation 161

and complex models, the “divide and conquer” approach in which the solution
of the entire model is constructed on the basis of the solutions of its individual
sub-models [2] is followed. However, to properly cope with state explosion, it is
not sufficient to resort to a modular and compositional approach at model design
level, but this same approach has to be pursued at model solution level as well.
Since this is clearly a pressing requirement, a number of research studies have
started to tackle this problem in the last years, and some interesting approaches
have appeared in the literature. [1] describes an approach for solving reliability
models for systems with repairable components and introduces several approx-
imations (effective in practice). [3] describes a general-purpose technique useful
for an efficient analytic solution of a particular class of nonproduct-form models.
Some other authors ([6], [10]) describe techniques based on generating the model
of a modular system by composition of the submodels of its components. [7] pro-
poses an efficient modeling approach and solution for Phase Mission Systems.
As expected, given the high difficulty of the problem when approached in its
most general terms, the existing proposals do not attempt general solution for
the entire spectrum of systems; rather, they address specific system categories.
Pursuing similar objectives, the goal of this paper is to present a novel method-
ology for dependability and performability evaluation tailored to a particular
class of systems.

Specifically, we consider systems running applications composed of a set of
functional tasks organized in such a way that the flow of computation moves
along a hierarchy, without any dependency among components at the same hi-
erarchical level, as better described in the next sections. Typical applications
resembling such structure are control systems or resource management systems,
where activities are carried on cyclically and consist of the following sequential
tasks: monitoring of the system/subsystem behavior, elaboration of some com-
putation to determine next actions and actuation of the selected actions. Taking
advantage of the peculiar characteristics of such systems category, our model-
ing approach provides an efficient, scalable and easily maintainable architectural
model that allows to better master complexity both in the design of the model
and in its solution. To illustrate the methodology, its application to a case study
is shown.

The rest of this paper is organized as follows. Section 2 describes the par-
ticular class of systems considered. Section 3 is devoted to the full descrip-
tion of the modeling approach. In Section 4 a case study is presented to il-
lustrate a practical application of the methodology. Conclusions are drawn in
Section 5.

2 Characteristics of the Considered Class of Systems

The class of systems our methodology focuses on is mainly characterized by a
hierarchical structure of the system components and of the computation flow,
as graphically depicted in Figure 1.



162 S. Porcarelli et al.

Fig. 1. Targeted class of systems

In more details, the main properties characterizing this class of systems are:
1. The system is composed of sets of hardware or software components (COMP)

which can be logically grouped in “stages” (Stage 1, ..., k, k + 1, k + 2, ...);
2. A component at stage k (COMPk) may interact only with those at stages

(k − 1) and (k + 1) by means of message exchange and these interactions
are unidirectional (e.g. from stage k to stage (k + 1)). Therefore, there
could be a functional dependency between two generic components COMPk

and COMPk+1. A functional dependency between one component at stage
k and more than one component at stage (k + 1) is not explicitly con-
sidered as it is equivalent to consider some (logical) replications of the
component at stage k, each one interacting with only one component at
stage (k + 1).

3. The interaction among components and the failure assumptions on each com-
ponent are highlighted in Figure 2. This scheme is very general and must
be specialized for the particular component under analysis. To explain the
generic component’s behavior, let’s suppose it receives an input following a
Poisson distribution with a rate λIN . These inputs are assumed to be correct
or incorrect with a probability α and 1 − α, respectively.

In correspondence of inputs, which arrive with a rate λIN , the compo-
nent produces an output with a rate p ∗ λIN , where p is the probability a
received input leads the component to produce an output. Moreover, the
component is assumed to possibly behave incorrectly by self-generating spu-
rious outputs with a rate λS . Thus, the “potential”1 output rate of the
component is expressed as λIN→OUT = λIN + λS. From the point of view of

1 Here, a “potential” output encompasses both emitted and omitted output (p = 1),
while for “output” we refer only to those emitted.



A Modular Approach for Model-Based Dependability Evaluation 163

Fig. 2. How a Generic Component Interacts with Others

propagation, an output issued by COMP is propagated to another compo-
nent with a rate λOUT = (pCorrect + pCorrupted) ∗λIN→OUT, where pCorrect and
pCorrupted represent the probabilities of generating a correct output (cor-
rect emission) and an incorrect output (incorrect emission), respectively.
In general, a correct emission happens whenever a correct output is pro-
duced. A correct emission is possible i) in response to a correct input if
the system is free from errors, or ii) in response to a correct input, if sys-
tem errors are detected and tolerated. An incorrect emission happens either
in reply to an incorrect input, or as consequence of a spurious output or
of a wrong processing of a correct input. A correct omission may happen
as consequence of an incorrect input or of an erroneous status of the sys-
tem. An incorrect omission may happen as consequence of wrong process-
ing of a correct input. These input-output combinations are summarized in
Table 1. The input/output parameters characterizing each component are
instead summarized in Table 2, where pnoOutCorr and pnoOutIncorr are the
probabilities that the output is correctly omitted and incorrectly omitted,
respectively.

As already discussed in the Introduction, although the presented system char-
acterization does not cover each conceivable system, yet it is well suited for a
restricted but well populated class of systems, like control systems and resource
management systems. Given the behavior structure and failure semantics de-
picted in Figure 2, typical measures of interest from the dependability point of
view in this context are:



164 S. Porcarelli et al.

Table 1. Input-output combinations

Input Corresponding feasible output
Spurious output (internally generated) Incorrect Emission
Correct input Correct Emission, Incorrect Emission, Incorrect Omission
Incorrect input Correct Omission, Incorrect Emission

Table 2. Input-output parameters for a component model

Input parameters Output parameters
α, λIN λOUT, pCorrect, pnoOutCorr, pnoOutIncorr, pCorrupted

1. The probability of correct and incorrect emission;
2. The probability of correct and incorrect omission;
3. The overall probability that the system does not undertake wrong actions.

3 The Proposed Modeling Approach

In this section we describe our modeling approach, which fully exploits the above
discussed characteristics of the reference class of systems. First, we deal with the
model design process, that is, how to model a complex system starting from its
functional specification and applying a stepwise refinement to decompose it in
small sub–models. Then, the second part of the methodology is presented, which
concerns the modular model solution, carried out in a bottom-up fashion. In fact,
a methodological approach becomes attractive when it is not only directed to
build models in a compositional way, but it also includes some capabilities to
reduce their solution complexity. The philosophy of our modeling approach is
shown in Figure 3.

Fig. 3. Modeling approach



A Modular Approach for Model-Based Dependability Evaluation 165

In order to construct an efficient, scalable and easily maintainable architec-
tural model, we introduce a stepwise modeling refinement approach, both for
the model design process and for the model solution. Another advantage of this
approach is to allow models refinement as soon as system implementation details
are known or/and need to be added or investigated.

3.1 The Model Design Process

The model design process adopts a top-down approach, moving from the en-
tire system description to the definition of the detailed sub-models, while the
model solution process follows a bottom-up approach. As inspired by [5], the
system is firstly analyzed from a functional point of view (functional analysis),
in order to identify its critical system functions with respect to the validation
objectives. Each of these functions corresponds to a critical service provided by
a component.

The overall system is then decomposed in subcomponents, each one per-
forming a critical subfunction, and each subfunction is implemented using a
model that describes its behavior. Therefore, starting from the high-level ab-
stract model, we perform a decomposition in more elementary (but more de-
tailed) sub–models, until the required level of detail is obtained.

The definition of the functional (abstract) model represents the first step of
our modeling approach. The rules and the interfaces for merging them in the
architectural dependability model are also identified in this phase. The second
step consists in detailing each service in terms of its software and hardware
components in a detailed (structural) model accounting for their behavior (with
respect to the occurrence of faults). The fundamental property of a functional
model is to take into account all the relationships among services: a service can
depend directly from the state of another service or, indirectly, on the output
generated from another service. The detailed model defines the structural de-
pendencies (when existing) among the internal sub–components: the state of a
sub–component can depend from the state (failed or healthy) of another sub–
component.

Fig. 4. Functional-level model related to a single service

Figure 4 shows the functional-level model related to a single service. The
internal state S is here composed of the place U, representing the nominal state,



166 S. Porcarelli et al.

and of the places D1 . . . DM , representing different possible erroneous (degraded)
states. The places I1 . . . IL and O1 . . . ON represent, respectively, the input (cor-
rect or exceptional, due to propagation of failures from interacting modules) and
the output of the model (correct behavior or failure - distinguishing several fail-
ure modes). The state changes (from the nominal, correct state to the erroneous
states and viceversa) and the flow between the input and output places are reg-
ulated by a structural model of the service implementation, indicated in Figure
4 as a black cloud.

Fig. 5. An example of Detailed Model

An example of a structural model using SANs [11] is shown in Figure 5,
where the service F is obtained through components C1, C2 and C3. In turn,
each component has the same structure of Figure 4, where the input/output
relationships with other components are not considered. Notice that how these
components concur to determine the state of the service (F , /F1 or /F2) is
described in a simple way by means of the input gates repairGate and failureGate
and the output gate outGate (in this example they are not fully specified because
they are system dependent). C2 and C3 are in parallel and in series with C1:
F is in its nominal state if C1 is up and at least one of C2 and C3 is up. The
output gate outGate defines the relationship between input and output, given
the internal status of the system.

3.2 The Model Solution Process

The model solution follows a bottom-up approach from the detailed model up to
the abstract model. The implementation is strictly related to the environment
characteristics of the system under analysis. Actually, starting from the general
class of systems of Figure 1, we can derive several simplified systems that can
be solved very efficiently.



A Modular Approach for Model-Based Dependability Evaluation 167

Environment Characteristics. We denote with λOUT, COMPk

i the intensity of
the output process of the i-th component of a group belonging to stage k
(COMPk

i ). We make the following assumptions:

1. The distribution of the input process of each component is Poisson with rate
λIN. This is accepted in the literature when the number of arrivals in a given
time interval of time are independent of past arrivals.

2. The distribution of the output process of each component is Poisson dis-
tributed with a rate λOUT. This assumption corresponds, for example, to
the case in which the inputs are processed sequentially without queuing and
losses, and the processing time of the input is deterministic. Equivalently, we
could obtain the same output distribution considering that the service time
is Poisson distributed and that the component operates as a steady-state
M/M/1 queuing network [12].

Using the assumption that the output process of COMPk
i is Poisson dis-

tributed with rate λOUT, COMPk

i , the superposition of Nk Poisson processes with
intensities λOUT, COMPk

1 , . . . , λOUT, COMPk

Nk
is equivalent to a Poisson process with in-

tensity equal to λOUT, COMPk

1 + . . . + λOUT, COMPk

Nk
.

Solving the detailed model of components COMPk
1 , ..., COMPk

Nk
leads to the

evaluation of the probabilities of correct/incorrect output emission/omission and
the intensity of the output process of a group of Nk components. Let’s defining as
P ki

Correct, and P ki

Corrupted the probability of correct emission, and the probability
of incorrect emission of COMPk

i , respectively. Notice that these probabilities
depend upon the intensity of the input process (λIN, COMPk

i ) and of spurious alarms
(λS, COMPk

i ) (both supposed being Poisson). The following relations holds:

ΛOUT, COMPk
=

Nk∑
i=1

λOUT, COMPk

i , (1)

αCOMPk+1 =
1

ΛOUT, COMPk

Nk∑
i=1

λOUT, COMPk

i

P ki

Correct

(P ki

Correct + P ki

Corrupted)
, (2)

where ΛOUT, COMPk is the intensity of the process achieved by aggregating the
output processes of the components COMPk

1 , ..., COMPk
Nk

, while αCOMPk+1 is
the probability that the next component at stage k + 1 receives a correct input.
Analogous considerations hold for COMPk+1, and so on. This general approach
can be specified for the following cases:

– If all groups of Nk components at stage k are identical, the total number
of detailed models to be solved in order to evaluate the system of Figure 1
is equal to

∑K
k=0 Nk, where K is the number of “stages” in the system. It

corresponds to evaluate the system of Figure 1 with its equivalent model of
Figure 6 where ΛOUT, COMPk and αCOMPk+1 are evaluated by means of equations
(1) and (2), respectively. This way, the “tree” structure of the system of
Figure 1 collapses in a unique “branch” from the point of view of system
evaluation.



168 S. Porcarelli et al.

– If all groups of Nk components can not be considered identical at each
stage, the number of models to be solved depends on the number of different
“branches” in which the overall model can be simplified (see Figure 1).

– If for each stage k of the system, all the components are identical, it is
possible to solve only K detailed models, one for each stage. Therefore, if
all the components at level k are identical, than λOUT, COMPk

i = λOUT, COMPk ,
P ki

Correct = P k
Correct, P ki

Corrupted = P k
Corrupted, and the previous equations

reduce to
ΛOUT, COMPk

= NTOT
k ∗ λOUT, COMPk

, (3)

αCOMPk+1 =
P k

Correct

(P k
Correct + P k

Corrupted)
, (4)

where NTOT
k is the total number of components at stage k.

Equivalently, the general model of Figure 1 is reduced to the equivalent
simplified system model of Figure 6 that can be solved more easily.

Fig. 6. Simplified system model equivalent to Figure 1

If it can not be assumed that the output process of COMPki follows a Poisson
distribution, the general approach is still valid provided that the detailed model
is slightly modified allowing to estimate the real distribution of such a process.
The same distribution will be used as input at the k + 1 stage. However, in
general, it will be no longer possible to solve the models analytically.

If the measures of interest are probabilities, the moments of the distribution of
the events which yield such probabilities are not considered at all. In this case it
is not necessary to use, at the abstract level, models having the same distribution
estimated at the detailed ones. If, on the contrary, we are interested in evaluating
the moments of the distribution of correct/incorrect output emission/omission,
the output processes distributions achieved by the detailed models have to be
used for the solution of the abstract models.

The Schema. According to Figure 3 (showing the philosophy of our model-
ing approach) the model solution follows a bottom-up approach: solution of a
detailed model is exploited to set up the parameters of the corresponding ab-
stract model and of the detailed model of the next (contiguous) components (the



A Modular Approach for Model-Based Dependability Evaluation 169

output of the detailed COMPk model acts as input for the detailed COMPk+1

model). To keep the presentation simple, the model solution scheme is described
in the case where all the Nk components at each stage k are identical; there-
fore only K detailed models (one for each stage) have to be solved. Figure 7
shows the relationships among a detailed model of COMPk and the model
COMPk+1.

λλλλIN->OUT,COMP^k

p
k
Correct

p
k
Corrupted

p
k

noOutIncorr

p
k

noOutCorr

ααααk+1
= p

k
Correct / (p

k
Corrupted+p

k
Correct)

λλλλIN, COMP^k
 =Nk-1*λλλλIN->OUT,COMP (̂k-1)

*(p
k-1

Corrupted+p
k-1

Correct)

Stage_K Detailed Model

λλλλIN->OUT,COMP^k

Stage_k

Abstract

Model

ααααk
= p

k-1
Correct / (p

k-1
Corrupted+p

k-1
Correct)

λλλλIN, COMP^(k+1)
 =Nk*λλλλIN->OUT,COMP^k

*(p
k

Corrupted+p
k
Correct)

Fig. 7. Relationships between models solutions

With reference to the measures of interest listed in Section 2, the outcomes
of the detailed model COMPk are:

1. pk
noOutCor: is the probability that no output is produced by component

COMPk, as a consequence of an incorrect input;
2. pk

noOutIncorr: is the probability that an expected output is incorrectly not
propagated by component COMPk, as consequence of an internal fault;

3. λIN→OUT, COMPk ∗ (pk
Corrupted +pk

Correct): is the rate of messages propagated by
component COMPk to component COMPk+1;

4. pk
Correct: is the correct emission probability;

5. pk
Corrupted: is the emission failure probability. This value encompasses both

an expected wrong emission (as consequence of wrong internal processing)
and the unexpected emission (as consequence of an internal self-generated
false alarm).

All these parameters are used in the abstract model of component COMPk

(see Figure 7) while λIN→OUT, COMPk , pk
Correct and pk

Corrupted are used to derive
the parameter λIN, COMPk+1 to be used in the detailed model of COMPk+1. In
the system framework COMPk and COMPk+1 represent two components di-
rectly connected that exchange messages in one direction (from COMPk to
COMPk+1).



170 S. Porcarelli et al.

Fig. 8. Overall Solution Scheme

Summarizing, the overall solution scheme is shown in Figure 8. The detailed
models are solved separately: firstly, it is solved the model of COMPk, then the
values provided by equations (3) and (4) are passed as input to the detailed
model of COMPk+1 and so on. Finally, the probabilities of correct/incorrect
output emission/omission are passed to the corresponding abstract models, they
are joined together and then the overall abstract model is solved.

The advantages of the proposed approach are in two directions: first, to cope
with the problem of state space explosion when modeling a complex system
and, second, to allow efficient model solution for those systems having most of
their components identical and interacting each others only by means of message
exchange. Actually, in case the components are not all equal, a larger number of
detailed models have to be solved but still separately. Thus, the overall model,
encompassing all the useful information with respect to the measures of interest,
is achieved by joining the abstract models.

4 An Application: The CAUTION++ System
Architecture

The main objective of CAUTION++ [9] is the smooth transition from existing
wireless systems to new generation ones. This is pursued by designing and devel-
oping a novel, low cost, flexible, highly efficient and scalable system able to be
utilized by mobile operators to increase the performance of all network segments
(namely, GSM, GPRS, UMTS and WLAN). Different segments can use differ-
ent technologies and radio access. CAUTION++ exploits the available system
resources by enabling real-time monitoring, alarming, immediate adaptive appli-
cation of RRM (Radio Resource Management) techniques, vertical handover to
other systems (possibly of other operators) having as a major goal to optimize
the operators’ revenue and the users’ satisfaction.

The architectural solution is based on the concept of “monitor and manage”.
All resources at the air-interface are monitored in real-time and proper system



A Modular Approach for Model-Based Dependability Evaluation 171

components are developed to handle generated alarms through a set of RRM
(Radio Resource Management) techniques, to be applied where needed. The
decisions-making process is performed at two levels: a local resource management
in charge of managing the capacity of a each single network and a global resource
management, which is in charge of inter-network coordination for the sake of the
overall optimization of network capacity.

Fig. 9. Network Architecture for provision of capacity management mechanisms

Figure 9 shows the main components of the CAUTION++ architecture. Each
network segment has its own ITMU (Interface Traffic Monitoring Unit) and
RMU (Resource Management unit) which allow to monitor and manage the
attached network, respectively. Within each operator network, a GMU (Global
Management unit) can perform a global optimization. Different GMUs cooperate
to optimize among different operators. A Location Server (LS) can be used to
track users’ mobility and location: such information can be exploited by GMU
for a global optimization.

At the level of resource management provisions as offered by CAUTION++,
the starting point in addressing dependability issues is that the system under de-
velopment builds upon a number of existing network segments, each one charac-
terized by specific dependability and performance properties, in accordance with
the specific configuration adopted by the involved operators. The basic network
segments are therefore to be regarded as “non-touchable” system components.
Of course, their dependability and performance aspects can be analyzed, but
despite they have an impact on the overall system figures, they have to be ac-
cepted as they are. Actually, there is relevant interest in analyzing performance
and dependability aspects of wireless systems. In particular, the work in [4] con-
tributes to the analysis of GPRS by providing a modeling approach suitable for
investigating on the effects of outage periods on the service provision, with spe-
cial attention on the user perception of the QoS. Two different levels of modeling
have been considered. The first one defines a GPRS network availability model,
which focuses on the dependability of the various components of the GPRS in-
frastructure, while the other one defines a GPRS service dependability model,



172 S. Porcarelli et al.

which builds upon the network availability model. The latter model takes as in-
put the detailed stochastic characterization of the outages that is obtained from
the GPRS network availability model, and maps on it typical service requests
pattern of GPRS applications. The resulting composed model allows bridging
the gap between the classical network perspective commonly taken when study-
ing the availability of telecommunications systems, and a user and application
centric analysis of the dependability of services that can be provided through
the packet data service of GPRS.

Given the objectives of the CAUTION++ project , the dependability re-
quirements have to be therefore achieved by acting on the components of its
architecture and on the infrastructure connecting them.

The most important and challenging dependability requirement on the CAU-
TION++ architecture is to prevent RMU and/or GMU subsystems from carry-
ing out wrong reconfiguration actions or when is not necessary (as consequence
of some fault). Therefore, we are interested in the probability of correct/incorrect
emission and omission at RMU and GMU level.

The solution scheme for CAUTION++ is presented in Figure 10. It consists
of a three “stage” system in which each “stage” is composed of one component
(ITMU, RMU and GMU detailed model). This schema could be also valid in a
more complex scenario where more than one ITMU, RMU and GMU are present,
provided that all components at the same level are identical. For a more detailed
description of this case study, refer to [8].

Abstract
RMU Model

Abstract
ITMU Model

Abstract
GMU Model

• The probability of correct and incorrect emission.
• The probability of correct and incorrect omission.
• The probability of not undertaking wrong actions

by RMU and GMU.

High Level Architectural Model

ITMU Detailed Model RMU Detailed Model

  λIN->OUT,ITMU

pCorrupted_ITMU

pCorrect_ITMU

pnoOutIncorr_ITMU

pnoOutCorr_ITMU

  λIN->OUT,RMU

pCorrupted_RMU

pCorrect_RMU

pnoOutIncorr_RMU

pnoOutCorr_RMU

GMU Detailed Model

  λIN->OUT,GMU

pCorrupted_GMU

pCorrect_GMU

pnoOutIncorr_GMU

pnoOutCorr_GMU
λλλλIN->OUT, ITMU λλλλIN->OUT, RMU λλλλIN->OUT, GMU

Fig. 10. CAUTION++ Overall Solution Scheme

5 Conclusions

This paper has focused on the development of a general evaluation methodology
to master system complexity and favor model reusability and refinement as much
as possible. The proposed method applies to a limited, but significant class of
systems characterized by a hierarchical computation flow (typical representatives
are control systems). In fact, the methodology exploits such system property to



A Modular Approach for Model-Based Dependability Evaluation 173

set up a modular and compositional approach, both for the model design process
and for the solution process. The resulting efficiency and easiness of the overall
evaluation activity makes this method very attractive, when applicable. The
CAUTION++ system architecture has been also briefly introduced, to show a
practical case study for the described methodology.

The solution scheme has been presented in the most simple and efficient
case where all components at the same level of the hierarchy are equal. Con-
sidering a more general case would imply a higher number of models to be
individually set up and solved, but still retaining the same ability of modular-
ity and compositionality. As future work, we intend to refine our approach, by
providing a completely general description to fully address the target systems
class.

Acknowledgments

This work has been partially supported by the European Community through
the IST-2001-38229 CAUTION++ project and by the Italian Ministry for
University, Science and Technology Research (MURST), project “Strumenti,
Ambienti e Applicazioni Innovative per la Societa dell’Informazione, Sottopro-
getto 4”.

References

1. M. Balakrishnan and K.S. Trivedi. Componentwise decomposition for an efficient
reliability computation of systems with repairable components. In Int. IEEE Symp.
Fault-Tolerant Computing (FTCS-25), pages 259–268, 1995.

2. G. Balbo. Introduction to stochastic Petri nets. In J.-P. Katoen, H. Brinksma,
and H. Hermanns, editors, Lectures on Formal Methods and Performance Analysis:
First EEF/Euro Summer School on Trends in Computer Science Berg en Dal, The
Netherlands, July 3-7, 2000, Revised Lectures, volume 2090 of Lecture Notes in
Computer Science, pages 84–155. Springer-Verlag, 2001.

3. G. Balbo, S.C. Bruell, and S. Ghanta. Combining queuing networks and generalized
stochastic Petri nets for the solution of complex models of system behavior. IEEE
Trans. Computers, 37(10):1251–1268, 1988.

4. S. Porcarelli, F. Di Giandomenico, A. Bondavalli, M. Barbera, and I. Mura. Accu-
rate Availability Estimation of GPRS. IEEE Transactions on Mobile Computing,
2(3):233–247, 2003.

5. C. Betous-Almeida, and K. Kanoun. Stepwise construction and refinement of
dependability models. In Proc. IEEE International Conference on Dependable
Systems and Networks DSN 2082, Washington D.C., 2002.

6. J.F. Meyer and W.H. Sanders. Specification and construction of performability
models. In Workshop on Performability Modeling of Computer and Comm. Sys-
tems, pages 1–32, 1993.

7. I. Mura and A. Bondavalli. Markov Regenerative Stochastic Petri Nets to Model
and Evaluate Phased Mission Systems Dependability. IEEE Computer Society
Press, 50, 2001.



174 S. Porcarelli et al.

8. S. Porcarelli, F. Di Giandomenico, A. Bondavalli, and P. Lollini. Model-based eval-
uation of a radio resource management system for wireless networks. In Computing
Frontiers, pages 51–59, Ischia, Italy, April 2004.

9. CAUTION++ IST Project. Capacity Utilization in Cellular Networks of Present
and Future Generation++. http://www.telecom.ece.ntua.gr/CautionPlus/.

10. I. Rojas. Compositional construction of SWN models. The Computer Journal,
38(7):612–621, 1995.

11. W. H. Sanders, and J. F. Meyer. A Unified Approach for Specifying Measures
of Performance, Dependability and Performability. In Dependable Computing for
Critical Applications, volume 4 of Dependable Computing and Fault-Tolerant Sys-
tems, pages 215–237. Springer Verlag, 1991.

12. K. S. Trivedi. Probability and Statistics with Reliability, Queuing, and Computer
Science Applications. John Wiley and Sons, New York, 2001.



 

M. Malek et al. (Eds.): ISAS 2004, LNCS 3335, pp.175–189, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Rolling Upgrades for Continuous Services 

Antoni Wolski and Kyösti Laiho 

Solid Information Technology, Merimiehenkatu 36D, 
FIN-00150 Helsinki, Finland 

{antoni.wolski, kyosti.laiho}@solidtech.com 

Abstract. With the advent of highly available systems, a new challenge has 
appeared in the form of the requirement for rolling upgrade support. A rolling 
upgrade is an upgrade of a software version, performed without a noticeable 
down-time or other disruption of service. Highly available systems were origi-
nally conceived to cope with hardware and software failures. Upgrading the 
software, while the same software is running, is a different matter and it is not 
trivial, given possible complex dependencies among different software and data 
entities. This paper addresses the needs for rolling upgradeability of various 
levels of software running in high-availability (HA) frameworks like the Avail-
ability Management Framework (AMF) as specified by SA Forum. The mecha-
nism of a controlled switchover available in HA frameworks is beneficial for 
rolling upgrades and allows for almost instantaneous replacement of a software 
instance with a new version thereof. However, problems emerge when the new 
version exposes dependencies on other upgrades. Such dependencies may result 
from new or changed communications protocols, changed interfaces of other 
entities or dependency on new data produced by another entity. The main con-
tribution of this paper is a method to capture the code, data and schema depend-
encies of a data-bound application system by way a directed graph called 
Upgrade Food Chain (UFC). By using UFC, the correct upgrade order of vari-
ous entities may be established. Requirements and scenarios for upgrades of 
different layers of software including applications, database schemata, DBMS 
software and framework software are also separately discussed. The presented 
methods and guidelines may be effectively used in designing HA systems capa-
ble of rolling upgrades. 

1   Introduction 

The concept of service continuity embraced in the goals of the Service Availability 
Forum1 is based on the notion that very short breaks in operation of service-providing 
applications are tolerable to a certain extent. This extent is specified using the avail-
ability measure A (percentage of the time a service is operational, as related to the 
total time the service is supposed to be operational) and, possibly, a maximum dura-
tion of a break (equal to mean time to repair, MTTR) or a frequency of breaks (repre-
sented with mean time between failures, MTTF). The three quantities are bound 
together with the formula: 
                                                           
1 www.saforum.org  



176 A. Wolski and K. Laiho 

 

%100•
+

=
MTTRMTBF

MTBF
A  

In the view of high availability standards like those of SA Forum, the main culprits 
preying on service continuity are failures—both of hardware and software. To deal 
with them, the system embodies redundancy both in hardware and software, managed 
by a high availability framework like AMF (Availability Management Framework) 
[4] of SA Forum.  

According to the SA Forum AIS (Application Interface Specification) model [1], 
redundancy is maintained at the level of service units that may comprise of one or 
more components. In the simplest redundancy model, called 2N, the two units, active 
and standby make up a mated pair, and the redundant application components are 
organized in pairs in the corresponding units. Should a failure occur, the failed active 
(service) unit (hardware or software) is quickly replaced with a corresponding standby 
(service) unit.  This operation is called a failover. Switching of the roles of units may 
be done also on request, in a no-failure situation, and this we will call a switchover. 
Switchovers are useful in various maintenance situations as will be seen in the sequel. 
Service continuity is preserved if, in the presence of failures, the required service 
availability level is maintained. If a standby system fails, it is repaired and brought 
back into synchrony with the active unit. Such a failure does not normally cause an 
interruption to the service. 

All systems face a need for component replacement and upgrades from time to 
time. The need to facilitate software upgrades is demanding because a system with 
continuous service uptime expectation can not be just stopped for maintenance and 
upgrade. In order to provide service continuity, the hardware and software upgrades 
have to be performed on a running system in such a way that the availability require-
ments are met. We will call such upgrades rolling upgrades. 

The concept of the rolling upgrade incorporates the notion of using the standby 
units present in a HA system and thus may be considered a special case of a dynamic 
upgrade in general [11]. It should be noted, hover, that engaging standby units in the 
upgrade process may temporarily jeopardize the availability level of the overall ser-
vice because it may happen that the standby unit may not be available for failover, 
should this be needed. For this reason, we propose to use spare units, in place of 
standby units, whenever the service availability in endangered. Spare units are units 
that are not assigned any active or standby role. Such units are available in many HA 
system platforms. The choice whether to use the spare unit or not depends on the 
anticipated upgrade duration and the criticality of the component being upgraded.  In 
the update scenario examples presented below, we make some educated decisions 
about using the spare units. In reality, such decisions have to be made on the basis of 
more accurate information about the required availability level and the duration of the 
upgrade.  

Given the complexity of modern telecommunications systems where implementa-
tions are becoming increasingly software-driven, several interrelated software layers 
have to be recognized. In this paper, we are concentrating on systems utilizing database-
centric applications, and thus the software layers considered for rolling upgrades are: 

• Operating system and availability framework 
• Database management system 
• Database schema 
• Database applications 



 Rolling Upgrades for Continuous Services 177 

 

The above layers are schematically shown in Fig. 1, together with the relevant 
interfaces among them. 

OS

Hardware

HA database

HA applications

OS  interface

AMF interface

Database
interface

Goal: continuous service
at the application interface

User

AMF

schema

HA conf.
data

 

Fig. 1. Layers of software in an HA system 

In Section 2, we survey the related work. In Section 3, the Upgrade Food Chain 
diagram is introduced with the purpose of capturing upgrade dependencies. In Section 
4, requirements and scenarios associated with upgrades at different software layers 
are discussed. We conclude by summarizing the methods and guidelines produced. 

2   Related Work 

From the outset of uninterruptible systems, the needs for evolutionary changes, in a 
running system, have been recognized [7]. Consequently, various methods of dynamic 
(or live) upgrading (or updating) have been proposed (for review of early dynamic 
upgrading systems, see [11]). Researchers strived for achieving automatic upgrading 
systems and thus the proposed methods dealt with homogeneous components of low 
granularity. The update granules were abstract data types in Argus [2], procedures in 
PODUS [11] and tasks (or transactions) in Conic [7]. The emergence of well-defined 
component-based frameworks, like CORBA,  J2EE and .NET, has offered new op-
portunities because of the unified component management and a possibility to repre-
sent component metadata in a natural way. There are methods for dynamic upgrading 
of CORBA components [14][8], Java RMI servers [12] and methods adaptable to 
J2EE EJB components [3]. Following the generally perceived needs, OMG has started 
an effort to produce the CORBA online upgrade specification [9], too.  



178 A. Wolski and K. Laiho 

 

Traditionally, the dynamic upgrades are expected to be unattented (i.e. automatic) 
and safe [3], i.e. not disrupting other components of the system. When building such a 
system, one has to answer two questions: 

1) How to obtain and represent the necessary change and dependency information 
(upgrade metadata)? 

2) How to execute the upgrade? 

It is easier to answer the latter question once there is a satisfactory answer to the 
former one. Efforts have been made to extract the necessary metadata from the com-
ponent interface specifications [14]. However, as the authors of [11] point out: "[fully 
automatic dynamic updating] cannot work properly if semantic information is needed 
to perform  any aspect of the updating". Consequently, human input is needed to pro-
vide some of the metadata.  An example is the ENT model (ENT stands for: Exports, 
Needs, Tags) [3] where the interface metadata is annotated with the changes in pro-
vided-requested relationships among components. Once the sufficient amount of 
metadata is produced, it can be used in unattended upgrading. 

Inter-component dependency diagrams were introduced in [7].  In our work, we go 
further by introducing the Upgrade Food Chain (UFC) diagram that captures the ver-
sion-specific change information only. This does not mean that the full dependency 
information is not needed: the change information is obtained by way of the differen-
tial analysis of the full dependency information. 

A requirement for the component to be quiescent before it can be upgraded is often 
presented [14]. However, we argue that, in the presence of an HA framework like 
AMF, the components need not be necessary quiesced because they are not quiesced 
when a failover happens. 

Similarly, it is required that the internal state is passed over to the new version of 
the component, to preserve the component correctness [11]. Our position is that we do 
not have to take care of that because the inherent nature of an HA component incorpo-
rates the notion of preserving the state in the presence of failover (or switchover). 
The means for achieving the preservation of state are application checkpoints [4] and 
writing the state into an HA database [5]. 

We are not aware of any work related to dynamic upgrades in large and diversified 
systems lacking a common component framework. In this work, we utilize the HA 
characteristics of a system, to ease the implementation of dynamic upgrades. 

3   Rolling Upgrades: Dependencies and Requirements 

3.1   Dependency Types 

A major problem in facilitating rolling upgrades is that components of a system are 
interrelated. To picture the dependencies among system components, we choose to 
represent three different types of software components: executable code (standalone 
or library), data and metadata. Code represents independently startable applications 
and subsystems, and libraries to which they are linked. Data represents application 
data stored in a database or other persistent or run-time storage. Metadata means 
database schema declarations, such as table/data structures and integrity rules. One 
application version is typically bound to one version of schema, and may not work 
properly with a changed schema. 



 Rolling Upgrades for Continuous Services 179 

 

We introduce the Upgrade Food Chain (UFC) diagram to picture the dependencies 
among the software components discussed above. A possible UFC diagram may have 
the form shown in Fig. 2. 

Fig. 2. Example UFC (Upgrade Food Chain) diagram 

Consider a situation where two applications, App1 and App2 are upgraded to version 
x+1. App1 uses data stored in a  new table A. It thus needs also an upgraded database 
schema incorporating table A. The data in table A used by App1 is produced by the 
upgraded App2. Additionally, App2 needs a new version of an ODBC driver to func-
tion properly. The dependencies shown in the diagram are upgrade dependencies. 
Upgrade dependencies are special cases of inter-component function dependencies, as 
explained below. 

Definition: Function Dependency 
A component A is said to be function-dependent on component B if it requires some 
services or characteristics of component B to function properly.  

If component A uses services of component B, it is said to be a consumer of 
services produced by B. Function dependencies among components are usually static 
and version-invariant. The reason is that, from the time of the component inception, 
its purpose and nature implies the related function dependencies. For example, all 
database-bound applications are function-dependent on the database schema, by 
definition. Exceptions from this rule may happen if the functionality of a component 
is changed significantly.  

Knowledge of function dependencies is a sufficient, but not necessary, condition 
for execution of a safe multicomponent upgrade. Given an existing version x and the 
target version x+1, the necessary condition is the knowledge of version-specific func-
tion dependency, called upgrade dependency. 

Definition: Upgrade Dependency 
Assume we are upgrading components A and B from version x to x+1. Component A 
is upgrade-dependent on component B if the upgraded component A requires the 
functionality or characteristics increment, introduced in the upgrade of B, to function 
properly. 
    One can see that the purpose of upgrade dependability is to represent new 
dependencies that are introduced with a new version. If the two components involved 
are versioned in a different way, both new versions should be indicated in the depend-
ency. On the other hand, if the function dependency of one component on another has 
not changed or is disappearing, with a given upgrade, it is not considered to be an 
upgrade dependency.  

App1 App2 
Table A

data 

Table A 
schema 

Table A
schema

ODBC 
driver 



180 A. Wolski and K. Laiho 

 

Definition: Upgrade Food Chain (UFC) Diagram 
Upgrade Food Chain diagram is a directed graph, with each nodes being an instance 
of one of the three component types (code, data and metadata), and edges  pointing to 
upgrade-dependent components. 

Intuitively, the components should be upgraded in the reverse order of directed 
edges, starting from outmost components. All the components captured in a single 
UFC are considered a part of an upgrade suite. Upgrading of components in an 
upgrade suite has to be coordinated (ordered) so that the components can function 
properly during the upgrade process. 

3.2   Assumptions About the System 

Upgrade Granularity. The upgrade granularity we consider for SA-aware software 
is between (and including) the component and the service unit. A component is the 
smallest entity recognized by the AMF and also a natural unit of software 
development.  A service unit (that comprises of components) is a unit of redundancy 
and thus switchovers are performed at this level. 

Because both the concepts are irrelevant at the level of the operating system and 
the HA framework, the upgrade granularity for both is that a of a (cluster) node. 

Distribution. An HA system is inherently distributed, not the least because of the 
hardware redundancy. Besides, the AMF has been planned for multi-computer 
clusters. Otherwise than assuming that components of one unit are co-located on the 
same cluster node, we do not make any references to the distributed nature of the 
system.  We assume the function dependencies among components do not depend on 
the fact whether the components are co-located on a node or not. 

Upgrade Transparency. When switchovers happen, the related component network 
addresses (service access points) change at each switchover. Upgrade transparency 
means that the consumer of the service, that is not upgrade-dependent on the 
upgraded service, should not be affected in any way by the upgrade. Because the 
upgrades we discuss are based on switchovers, the means for achieving upgrade 
transparency are the same as the means for achieving failure transparency, in an HA 
system, and we do not discuss it any further.  

3.3   Trivial Upgrade: Independent Component 

If a component upgrade is not dependent on any other component upgrade, it can be 
upgraded on its own because its upgrade suite does not comprise any other components. 

To upgrade an independent component, a plain switchover may be applied. In this 
case, the procedure is shown below, given Appa

n and Apps

n are application instances of 
version n running as components in active and standby units, respectively. 

To upgrade an independent code component App from version x to version x+1: 

1) Stop the component Apps

x in the standby unit. 
2) Install the new version of the component in the standby unit. 
3) Restart the component as Apps

x+1. 
4)  Perform controlled switchover of units (Appa

x becomes Apps

x) 
5) Stop Apps

x in the new standby unit. 



 Rolling Upgrades for Continuous Services 181 

 

6) Install the new version of the component in the standby unit. 
7) Restart the component as Apps

x+1. 
8) (Optional) Perform one more switchover if the original assignment of active and 

standby units was a preferable one. 

Requirements. After performing step 4, the instances Appa

x+1 and Apps

x have to 
interwork as a mated pair. If the active/standby operation at the component level 
involves communications between the active and standby component (e.g. to perform 
application state checkpoints), care should be taken of the need of the new version 
Appa

x+1 to be able to communicate with the old version Apps

x, and possibly vice versa. 
If there is no intra-pair communications, e.g. if the component instances exchange 
data via a database, this concern is irrelevant. 

Note that between steps 2 and 7, the system is vulnerable because it is running in 
stand-alone mode: there is no available standby component that can take over from a 
failed active component. For this reason, special precautions have to be taken if the 
period between steps 2 and 7 is protracted. Typically, you utilize a spare unit (hard-
ware or software) to do the installation if it requires more time. Spare units are units 
that are not assigned any active or standby role. 

3.4   Cycles in UFC 

There may be a case as depicted in Fig.3. The two applications are dependent on data 
produced by the other one. An example may be that App2 produces some statistical 
data based on transaction data produced by App1. On the other hand, App1 is using 
the statistical data to optimize its own operation.  

 

App1 
v.x+1 

App2 
v.x+1

Table A
data 

Table B
data 

Fig. 3. Example of a cyclic UFC diagram 

App1  
v.x+1 

App2 
v.x+1

Table A
data 

Table B
data 

Fig. 4. Introducing weak dependencies (dashed)



182 A. Wolski and K. Laiho 

 

If the depicted dependencies are strong, i.e. an application cannot operate without the 
data it is dependent on, we face a problem, because neither application will be able to 
operate. Therefore, the cycle has to be broken during the implementation of the appli-
cation upgrade. One way is to implement the upgrade in such a way, that an applica-
tion may operate, in a limited way, although the new data is not available. In such a 
case, the upgrade dependency between the application and the data is called a weak 
upgrade dependency. 

In Fig. 4, weak dependencies are introduced, allowing to upgrade the two applica-
tions in any order. 

Requirements. If a UFC cycle is detected, it has to be broken up during the upgrade 
implementation phase by introducing weak upgrade dependencies. Also, if there are 
dependencies among components of the same unit, it is preferable to change the 
dependencies to weak ones, because the actual order of setting the components to the 
active state may be a priori unknown. 

Introducing weak dependencies is preferable also otherwise, to ease or remove the 
ordering requirements in the upgrade execution. There may be, however, some addi-
tional cost involved in making components weak-dependable on other components. 

3.5   Acquiring and Using UFCs 

The information captured in a UFC is mostly based on the incremental changes in the 
application semantics. If there exists component function dependency information 
captured in the component metadata similar to the ENT model in [3], the UFC may be 
extracted automatically by way of differential analysis of the metadata (between the 
current and the target version). In large diversified systems such metadata is not read-
ily available. Therefore we assume the information pertaining to UFCs have to be 
acquired from the application developers when they are developing an upgrade. Once 
UFCs are available they may be used in constructing upgrade scripts to be run on a 
production system, or even used by an automatic upgrade facility. For this purpose, 
UFC graphs may be converted to a computer-readable form, e.g. using XML. 

3.6   Other Assumptions 

In the following sections, when we discuss upgrade scenarios, we make certain 
assumptions about the quality of upgrades: 

• The upgraded software has been tested properly on a test system incorporating all 
know dependencies.  

• The upgrade procedures have been also tested on a test system or on spare units of 
the production system.  

• Because the process of generating UFCs from application semantics is human-
centered, and therefore error-prone, one must prepare for the worst and have a 
backup plan for the situation where the upgrade (despite all proper preparations) 
is not successful, and the system has be returned to the state, that existed before 
the upgrade was started. We assume here that system backup images can be and 
are taken before the start of the upgrade process and that the backup state can be 
restored if needed.  



 Rolling Upgrades for Continuous Services 183 

 

4   Upgrade Scenarios 

4.1   Operating System Upgrade 

Operating system upgrade is slightly outside the scope of this paper, as the operating 
system is, typically, independent of the HA software running in the system. However 
the capability to perform the service unit switchovers may be utilized in OS upgrades, 
too. Because installing of a new version of an operating system may be a time-con-
suming process, spare nodes should be used to perform the installation in the back-
ground, without jeopardizing availability of the currently running services. Once the 
spare is upgraded, the standby node can be brought down and rapidly replaced with 
the spare, reducing the period of vulnerability of the system. 

Similarly to all other software, we assume the compatibility and operation of the 
new version of the operating system has been tested on a separate test system. 

Upgrade Scenario: Operating System 

1) Install the operating system on a spare node 
2) Install the HA framework, DBMS and applications if necessary. 
3) Disconnect current standby node (i.e. the node running standby units) from the ac-

tive node (resulting in a temporary standalone operation). 
4) Transfer the database of the standby node to the upgraded spare node. 
5) Assign the spare node the role of new standby node. The old standby node 

becomes a spare node. 
6) The framework initializes the components and the active/standby operation resumes. 

The active and standby databases become reconnected and resynchronized. 
7) Perform a controlled switchover. 
8) Repeat steps 1-7 starting with the new spare node and new standby node. 

The above scenario should be repeated for all pairs, in a 2N+M redundant system, 
where M is the number of spare nodes. If there are no spare nodes in a system, the 
periods of standalone operation will be longer, as the operating system is being up-
graded on a standby node. 

4.2   HA Framework Upgrade 

An HA framework (like SA Forum's AMF) has interconnected instances running on 
each node. The HA framework upgrades may be dependent on the system model 
schema updates and new configuration files if they exist (see notes about monotonic 
schema upgrades in the following subsection). Another difficulty is that all SA-aware 
(meaning, in the SA Forum parlance, highly available) components are dependent on 
the framework software because they are typically linked to the framework's libraries. 
The UFC diagram for framework upgrade is shown in Fig. 5. Because the re-linking 
the applications make take some considerable amount of time, using of spare nodes is 
preferable, as in the previous case. 

Upgrade Scenario: HA Framework 
1) Perform the (monotonic) schema upgrade in the system model database to support 

the HA framework upgrade (if applicable) 
2) Upgrade the HA framework at the spare node. 



184 A. Wolski and K. Laiho 

 

3) Re-link other SA-aware subsystems and applications with the upgraded framework 
libraries, at the spare node. 

4) Disconnect current standby node (i.e. the node running standby units) from the ac-
tive node (resulting in a temporary standalone operation). 

5) Transfer the database of the standby node to the upgraded spare node (if applica-
ble). 

6) Assign the spare node to be a new standby node. The old standby node becomes a 
spare node. 

7) Perform a controlled switchover. 
8) Repeat steps 2-7 starting with the new spare node and new standby node. 

The above scenario should be repeated for all node pairs, in a 2N+M redundant 
system, where M is the number of spare nodes.  

Requirements. In order for the presented scenario to succeed, the HA framework 
upgrade has to be engineered in such a way that the instances of the old version and 
new version of the framework can coexist in the same system. Should this turn out 
untrue, the rolling upgrade of the HA framework will be impossible, and closing 
down of the whole system will be required. 

4.3   DBMS Upgrade 

An HA DBMS must be engineered in such a way that rolling upgrade of the DBMS 
software is possible. Additionally, the involved dependencies and requirements have 
to be taken into account. The dependencies related to the DBMS upgrade are shown 

Applications 

System 
Model 

AMF 
libraries

AMF kernel 

Fig. 5. UFC for HA Framework Upgrade 



 Rolling Upgrades for Continuous Services 185 

 

in Fig. 6. The weak dependency of applications on upgraded driver libraries (such as 
ODBC) is explained in the way that the upgraded DBMS should be upward compati-
ble with respect to drivers: the drivers of the old version can be used with the 
upgraded DBMS. Therefore, drivers may be upgraded at any later time (if a driver 
upgrade exists). The fact that there is a dependency of applications on new drivers 
may be explained by possible performance improvements in the drivers.  

We assume that the database runs in the active/standby redundancy configuration. 
Given the assumed short time of performing the upgrade, the scenario does nor em-
ploy the spare node. 

 
Fig. 6. Dependencies of the DBMS Upgrade 

A DBMS upgrade scenario may be very much vendor-specific. The scenario shown 
below is supported in the Carrier Grade Option of the Solid Database Engine [13]. 

Upgrade Scenario: HA DBMS 

1) Stop the standby DBMS server. 
2) Upgrade the DBMS software at the standby node. This involves loading program 

media, necessary settings and license files into installation directories. 
3) Start the upgraded server in the standby mode, with optional conversion mode 

enabled to convert the database to the format supported by the upgraded DBMS 
(if applicable). Note: if there are applications that are directly linked to the 
DBMS, they should be re-linked and restarted, too. 

4) Reconnect the servers so they resume the active/standby operation. The necessary 
database catchup (state resynchronization) is performed automatically. 

5) Perform the controlled switchover. The active node runs now the new version.  
6) Stop the DBMS server running at the new standby node. 
7) Install DBMS at the new standby node. 

Applications 

Driver libs

DBMS

Settings, 
licences 



186 A. Wolski and K. Laiho 

 

8) Start the upgraded server at the new standby node, with the optional conversion 
mode enabled to convert the database to the format supported by the upgraded 
DBMS (if applicable). Note: if there are applications that are directly linked to the 
DBMS, they should be re-linked and restarted, too. 

9) Reconnect the servers so they resume the active/standby operation, although in 
the reverse active/standby node configuration. The necessary database catchup is 
performed automatically. 

10) Perform the controlled switchover if the starting active/standby node configura-
tion was the preferable one 

Requirements. The crucial characteristics of a DBMS that is needed here is the capa-
bility of the new version to maintain the data replication stream with the old version. 
The minimum requirement is that the upgraded version may take up the standby role 
while the old version is running as an active. In order to make the upgrade painless for 
the applications, the new DBMS version must be totally upward compatible with the 
old one: there should be no change in the old functionality, although new functional-
ity may be added. Also, assuming that there are a set of applications (on other nodes 
of the system) that should be able to use both older version and the newer version of 
the database (before and after the switchover), then the newer version of the database 
server needs to be compatible with the older version of the client API - such as ODBC 
and JDBC. 

4.4   Schema Upgrade 

Application upgrades are often dependent on schema upgrades as the new application 
functionality requires an enhanced data model. Thus, schema upgrades have to be 
installed before any depending application upgrades. The problem of schema up-
grades (or, schema evolution) in production systems has been a recognized issue [10]. 
Typically, the objective of schema evolution is to satisfy the needs of new applica-
tions or application updates without jeopardizing the pre-existing applications.  

In an HA environment, schema updates have to be performed on a live database, 
while the applications are running, because bringing the database totally off-line 
would endanger the overall availability goal. Fortunately, contemporary relational 
database systems typically support dynamic schema changes. Tables and columns 
may be added and dropped, referential integrity constraints may be redefined, etc. In 
an active/standby database pair, the schema changes have to be propagated from the 
active to the standby database.  

Another problem is how to ensure that schema upgrade does not invalidate running 
applications. To do this, stringent limitations have to be enforced over schema up-
grade design and application development. A schema upgrade that is upward com-
patible with the existing applications (with certain assumptions) is called a monotonic 
schema upgrade. 

Definition: Monotonic Schema Upgrade 
A schema upgrade is monotonic if and only if: 

i. None of the first-class objects2 is removed or renamed. 
ii. None of the existing columns is removed or renamed 

                                                           
2 First-class objects (in a relational database) are named schema objects created with the SQL 

CREATE statement, such as tables, views, constraints, triggers, etc. 



 Rolling Upgrades for Continuous Services 187 

 

iii. None of the existing integrity constraints is changed 
iv. None of the existing active objects (stored procedures, triggers and events) is 

redefined 

One can see, that a monotonic schema upgrade is, essentially, a schema extension. 
Objects like tables, views and triggers, table columns and related constraints may be 
added. 

The fact that a schema upgrade is monotonic is not a sufficient guarantee that run-
ning applications are not invalidated with the upgrade. The applications themselves 
have to be built following the schema-upgrade-safe rules. 

Rules for Schema-Upgrade-Safe Application Development 
An application is unaffected by a monotonic schema upgrade if 

i. It does not take advantage of any implicit column ordering.  
ii. It does not take advantage of table dimensionality (number of columns). 

iii. Its error processing (especially of DELETE statements) anticipate possible 
referential enhancements. 

The effect of (i) and (ii) is that statements like SELECT *, and INSERT without 
explicit columns names, are forbidden. The reason for (iii) is that, as new tables may 
be associated with existing tables as referencing tables (having foreign keys pointing 
to existing tables), referential integrity violations may emerge. For example a 
DELETE statement on an existing table may produce a referential integrity error if 
there are dependent rows in a referencing table. Normal defensive programming 
(anticipating errors wherever errors are theoretically possible) will suffice. Addition-
ally, new integrity rules may be added to the new foreign key definitions, like … ON 
DELETE CASCADE to guarantee that no new referential integrity errors emerge. 

Given that the schema upgrade is monotonic and the application are built following 
the rules for schema-upgrade-safe development, rolling schema upgrades should be 
possible.  

The monotonic schema upgrade should satisfy most needs of the normal applica-
tion life cycle. Should there be a need for a non-monotonic upgrade involving 
renaming and changing of the schema semantics, a more careful approach is needed. 
In such a case, applications have to be scanned for possible change dependencies and 
reprogrammed accordingly, before the schema upgrade is applied. 

The schema upgrade scenario may depend on the HA DBMS implementation used. 
If an active/standby HA DBMS is capable of propagating the schema changes, as well 
as data, from the active to the standby database (as does the Solid CarrierGrade 
Option of the Solid Database Engine), then the upgrade scenario is trivial. 

Upgrade Scenario: Schema Upgrade 

1) Apply the schema upgrade, dynamically, to the active database. The schema 
changes are automatically propagated to the standby database. 

After creating the new schema elements, such as tables and columns, these are 
unpopulated (empty). It is often the case that portions of the existing data need to be 
migrated to the new schema, or that the new schema elements will need some default 
values or other seed data. Assuming that the applications are developed in a schema-
upgrade-safe fashion, e.g. the existing applications can continue using the changed 



188 A. Wolski and K. Laiho 

 

database schema, the data migration and the new schema population can be applied to 
the operational active/standby database without causing downtime to service. For 
example, in the case of Solid Database Engine Carrier Grade Option, data migration 
tasks would be executed against the active database, and automatically synchronized 
to the standby, after which the schema upgrade is complete, and both database nodes 
are ready for use (for the new database client application versions). Note: in the case 
of large data migration requirements, the data migration itself may have a perform-
ance effect and lead to temporary service level degradation. This needs to be taken 
into account and tested properly when designing the rolling upgrade process.  

After the schema upgrade is performed, next come the dependent application 
upgrades. 

4.5   Application Upgrade 

Because of possible dependencies, application upgrades should be carefully planned. 
As some applications may be producers and the other consumers of data, UFC dia-
grams may useful to capture the dependencies of the type shown in Fig. 2 and Fig.3. 
The cyclic dependencies have to be discovered early in the upgrade development 
cycle to allow for reprogramming the applications and introducing weak dependen-
cies. Some of the weak dependencies may be then broken in the UFC graph, allowing 
for an acyclic graph. An acyclic UFC graph indicates the correct upgrade installation 
sequence, starting from the outer (leaf) nodes. Note that the ordering of the upgrade is 
that of partial ordering: any pair of mutually independent upgrades may be installed in 
any order. If several mutually independent or weakly dependent upgrades are com-
prised in a single service unit of a HA system, they may be installed in the same 
installation step. The UFC diagram may be then organized into a set of partially 
ordered upgrade steps 

A single step of application upgrades is performed using the controlled switchover: 

Upgrade Scenario: Application Upgrade 

i. In a standby service unit of the system, stop the applications awaiting the upgrade. 
ii. Install and start the upgraded applications in the standby mode. 

iii. Perform a controlled switchover. 
iv. Perform steps 1-3 in the new standby unit 

Once an installation step is executed, the dependent upgrade steps may be 
performed. Throughout the time of the upgrade procedure, the applications are 
continuously available, with the exception of short breaks during switchovers. This 
way, the goal of providing continuous services is achieved in the presence of system 
upgrades. 

4.6   Other Application System Architectures 

In the presentation, we have mostly assumed two-tier (client/server) application 
architectures. In reality, more complex architectures may be used, including transac-
tion processors, application servers and messaging frameworks like Web Services. In 
those architectures, the principles of the UFC diagram creation and usage remain the 
same although new component types may emerge in analysis. 



 Rolling Upgrades for Continuous Services 189 

 

5   Conclusions 

Performing rolling upgrades on a continuously operating HA system is a demanding 
task. It can be successfully performed given proper methods and technologies are 
used. The prerequisites for a successful rolling upgrade at any level of the system are: 

1) Finding out upgrade dependencies and capturing them with, for example, Upgrade 
Food Chain (UFC) diagrams. 

2) Programming the upgrades in a way that allows for existence of weak depend-
encies and satisfies the rules of schema-upgrade-safe application development. 

3) Assuring monotonic schema upgrades. 
4) Using an HA DBMS that supports dynamic and uninterruptible schema update. 
5) Using an HA DBMS capable of rolling upgrade of the DBMS software. 
6) Using a HA framework software capable of doing a rolling upgrade of its own. 

There are also several unresolved issues that require further study. Among them 
are: analysis of the performance impact of rolling upgrades, dealing with ad-hoc 
environments that do guarantee neither monotonic schema upgrades nor upgrade-safe 
applications, and satisfying the need to have a possibility to downgrade as well. 

References 

1. Application Interface Specification, SAI-AIS-A.01.01, April 2003. Service Availability 
Forum, available at www.saforum.org. 

2. Bloom, T., Day, M.: Reconfiguration and module replacement in Argus: theory and prac-
tice. Software Engineering Journal, March 1993, pp. 102-108. 

3. Brada, P.: Metadata Support for Safe Component Upgrades. COMPSAC 2002: 1017-1021. 
4. Brossier, S., Herrmann, F., Shokri, E.: On the Use of the SA Forum Checkpoint and AMF 

Services. ISAS 2004, May 13-14, 2004 Munich, Germany. 
5. Drake, S., Hu, W., McInnis, D.M., Sköld, M., Srivastava, A., Thalmann, L., Tikkanen, M., 

Torbjørnsen, Ø.,Wolski. A.: Architecture of Highly Available Databases. ISAS 2004, May 
13-14, 2004 Munich, Germany. 

6. Jokiaho, T., Herrmann, F., Penkler, D., Moser, L.: The Service Availability Forum 
Application Interface Specification. The RTC Magazine, June 2003, pp. 52-58. 

7. Kramer, J., Magee, J.: The Evolving Philosophers Problem: Dynamic Change Manage-
ment. IEEE Trans. Software Engineering 18(11), pp. 1293-1306 (November 1990). 

8. Van de Laar, F., Chaudron, M.R.V.: A Dynamic Upgrade Mechanism Based on Pub-
lish/Subscribe Interaction. COMPSAC 2002, pp. 1034-1037. 

9. Moser. L.E., Melliar-Smith, P.M., Tewksbury, L.A.: Online Upgrades Become Standard. 
COMPSAC 2002, pp. 982-988. 

10. Roddick. J.F.: Schema Evolution in Database Systems - An Annotated Bibliography. 
SIGMOD Record 21(4), pp. 35-40 (1992). 

11. Segal M., Frieder O.: On-the-fly Program Modification: Systems for Dynamic Upgrading. 
IEEE Software, March 1993, pp. 53-65. 

12. Solarski, M., Hein Meling, H.: Towards Upgrading Actively Replicated Servers On-the-
Fly. COMPSAC 2002, pp. 1038-1046. 

13. Solid High Availability User Guide, Version 4.1, Solid Information Technology, February 
2004, available at http://www.solidtech.com. 

14. Tewksbury, L.A., Moser, L.E., Melliar-Smith, P.M.: Live Upgrades of CORBA Applica-
tions Using Object Replication. ICSM 2001, pp. 488. 



 

M. Malek et al. (Eds.): ISAS 2004, LNCS 3335, pp. 190–199, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

First Experience of Conformance Testing an Application 
Interface Specification Implementation 

Francis Tam and Kari Ahvanainen 

Nokia Research Center, P.O. Box 407, FIN-00045 NOKIA GROUP, Finland 
{francis.tam, kari.ahvanainen}@nokia.com 

Abstract. This paper describes our first attempt of conformance testing an 
implementation of the Service Availability Forum Application Interface 
Specification on a carrier-grade service platform for mobile communications 
applications. The requirements and guidelines of the IEEE Standards for 
measuring conformance to POSIX® have been adapted for the Application 
Interface Specification. The Test Method Specification structure is explained 
and assertions of the component registration function is shown as an example. 
A description of the Implementation Under Test is included, together with an 
explanation of the Test Method Implementation.  Our experience suggests that 
this approach is indeed feasible and repeatable. The thorough level of testing 
appears to have the right balance of confidence and manageability for test cases. 
The intermediate test results also unexpectedly provide the developers with 
some useful insight into future implementations. 

1   Introduction 

With the advent of end customers in the telecommunications market wanting more 
new services at an increasing rate, and the dependability level of such services as high 
as the traditional ones, network infrastructure equipment manufacturers and 
application developers are faced with the challenge of delivering such services in ever 
shorter cycles. In December 2001, ten leading communications and computing 
companies announced an industry-wide coalition [1] to create and promote an open 
standards for Service Availability. By standardising programming interfaces for 
developing and deploying highly available applications, the Service Availability 
Forum attempts to tackle the issue of reducing development time and costs for highly 
available services. 

The focus of the Service Availability Forum is to build the foundation for on-
demand, uninterrupted landline and mobile network services.  In addition, the goal is 
to come up with a solution that is independent of the underlying implementation 
technology. This can be achieved by first of all identifying a set of building blocks in 
the context of the application domain, followed by defining their interfaces and 
finally, obtaining a majority consensus among the suppliers. 

To date, the Service Availability Forum has already published the Hardware 
Platform Interface Specification [2] and the Application Interface Specification [3]. 
The Hardware Platform Interface (HPI) primarily deals with the monitoring and 
controlling the physical components of a carrier-grade computing platform. By 



First Experience of Conformance Testing 191 

 

abstracting the platform specific characteristics into a model, an HPI implementation 
provides the users with standard methods of monitoring and controlling the physical 
hardware via this abstraction. 

The Application Interface Specification (AIS) defines the capabilities of a high-
availability middleware interfacing with applications and the underlying carrier-grade 
computing platform. The AIS abstracts the high-availability characteristics into a 
model upon which an implementation provides standard methods to the application 
developers to respond and manage events such as failures.  The expected end result is 
to maintain service continuity by an application even in the presence of failures. The 
AIS defines an extensive Application Programming Interface (API) for an application.  
The availability management and control capability is captured in the Availability 
Management Framework (AMF). In addition, services such as cluster membership, 
checkpoint, event, message and lock have been defined to support the development of 
such system. 

As with any open standards solution, the publication of a specification is just the 
first step towards its goal.  The next step is to establish whether a product, claimed to 
be standard compliant, does conform to the published specification. Measuring the 
conformance of an implementation against a published specification is one of such 
means. In this paper, we give our first experience of conformance testing an early 
implementation of the AIS on an internal carrier-grade platform product for mobile 
communications applications. 

2   IEEE Standards for Measuring Conformance 

The objective of conformance testing is to establish whether an implementation being 
tested conforms to the specification as defined in a standard.  We attempt to follow, as 
much as appropriate, the requirements and guidelines offered by the IEEE standard 
2003-1997 [4] for measuring conformance to the POSIX® standards. This is based on 
the observation that measuring the conformance of a Service Availability Forum AIS 
implementation is quite similar to measuring that of a POSIX® implementation. In 
particular, at the API level there is a collection of C functions.  In addition, there is no 
compelling reason why we should not follow an existing standard where it is 
applicable. 

Figure 1 depicts the basic model for conformance assessment as defined by the 
IEEE standard.  In a Test Method Specification, a number of assertions are written for 
each element according to the base standard. An assertion defines what is to be tested 
and is stated in such a way that a test result code of PASS indicates conformance to 
the base standard. For each assertion, a set of allowable Test Result Code is stated. 
The set of Test Result Code associated with an assertion that a test program can report 
for a conforming implementation is known as Conforming Test Result Codes. 
However, the specification is mainly expressed using an informal, natural language 
such as English. 

Each assertion in the Test Method Specification is then turned into one or more 
instances of a Conformance Test Software for that assertion. Together with the 
necessary procedures for conducting the conformance test, they form the Test Method 
Implementation. 



192 F. Tam and K. Ahvanainen 

 

During the execution of the Conformance Test Software, Intermediate Test Result 
Codes may be produced to provide more information on why a specific test result 
code is issued. A Final Test Result Code is then determined for an assertion test. If all 
the Final Test Result Codes match with the specified Conforming Test Result Codes, 
the Implementation Under Test (IUT) is considered to be conforming to the base 
standard. 

IEEE
2003 Std

Base
Standard

Conforming
IUT

Nonconforming
IUT

Test
Method

Specification

Conforming
Test Result

Codes

Test Method
Implementations

Intermediate
Test Result

Codes

All
Test

Result Codes
Match?

Test
Method

Implementation
Developer

Yes

No

Final
Test Result

Codes

 

Fig. 1. Basic model for conformance assessment 

The results of Test Method Implementation against an IUT is summarised in a Test 
Report containing information such as the identifications of the base standard, test 
method specification and test method implementation, result of each assertion test and 
the date when the IUT was tested. 

The Test Method Implementation is documented with information such as how to 
install, configure and execute the Conformance Test Software, gather and interpret the 
results, and the known limitations. 

Terminologies and Definitions 

Assertion: It defines what is to be tested and is TRUE for a conforming implemen- 
tation. 
Base Standard: The standard for which the conformance assessment is sought. In 
this paper, the AMF part of the Service Availability Forum AIS. 
Conforming Implementation: An implementation that satisfies all the relevant 
conformance requirements. 



First Experience of Conformance Testing 193 

 

Conformance Log: A human readable record of information, produced as a result of 
a testing session, that is sufficient to verify the assignment of test results. 
Conformance Test Software: Test software used to ascertain conformance to the 
base standard. 
Element: A functional interface. In this paper, each function call as defined in the 
AMF of the Service Availability Forum AIS. 
IUT: Implementation Under Test. 
SUT: System Under Test. The system on which the Implementation Under Test 
operates. 
Test Method Implementation: The means, typically a set of software and proce- 
dures, used to measure the conformance of an IUT to a base standard. 
Test Method Specification: A document that expresses the required functionality 
and behaviour of a base standard. These are described as assertions and a complete set 
of conforming test result codes is provided. 
Test Result Code: A value that describes the result of an assertion test. 

Level of Testing 

The IEEE standard distinguishes three major levels of testing. At the one end of the 
spectrum, exhaustive testing seeks to verify the behaviour of every aspect of an 
element, including all permutations. This however is normally infeasible due to the 
excessive number of tests required. At the other end of the spectrum is identification 
testing whereby only a cursory examination is required.  In this case, simply having a 
match of the C function prototypes is considered to be conforming. This approach 
clearly lacks the confidence we seek in an implementation claiming to be conforming 
and is therefore considered not too useful. 

In our first attempt of conducting conformance testing, we chose thorough testing 
that seeks to verify every aspect of an element but does not include all permutations. 
We frame our testing around all the possible return codes of an API, that is, we focus 
on all the success and error conditions. Since we exclude all the permutations of 
return codes, we therefore reduce the number of tests significantly and keep it down 
to a manageable set.  For example, in saAmfComponentRegister() there are 11 
return codes and therefore we only need 11 assertions. Under exhaustive testing 
however, we would have needed 2 to the power of 11 assertions, that is, 2048 of 
them. 

3   Test Method Specification 

The IEEE standard defines a generic assertion structure for describing a Test Method 
Specification. As a first attempt, we used a subset of the generic structure and we 
found that it was applicable. As such, we did not seek for any alternative structure. 
The following is the adapted structure in our conformance testing: 

<Assertion_identifier> 
    If <Option> then 
          If <Test_Support> then 
                (Setup: <Setup_Requirements>)* 



194 F. Tam and K. Ahvanainen 

 

                 Test: <Test_Text> 
                (TR: <Testing_Requirements>)* 
                (Note: <Notes>)* 
           Else <No_Test_Support> 
    Else <No_Option> 

Clauses marked with * are optional.  An <Assertion_identifier> is a 
unique label for an assertion within an element.  It is made up of the following 
characters: 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
a b c d e f g h i j k l m n o p q r s t u v w x y z 
0 1 2 3 4 5 6 7 8 9 . _ ( ) – 

The “If <precondition> then … Else <outcome>“ is used to specify 
the precondition needed for testing an assertion. 

<Option> represents the feature or behaviour defined in the base standard that need 
not be present in a conforming implementation. 
<Test_Support> represents those facilities needed by a System Under Test to 
perform an assertion test. 
<Setup_Requirements> are the steps that a test program must perform before 
performing a test of an assertion. 
<Test_Text> specifies the test to be performed. The text usually contains action 
and result. 
<Testing_Requirements> specifies the minimal testing required for an 
assertion. 
<Notes> contains additional information of an assertion. 

An Example 

We have included below an example of the saAmfComponentRegister() API. 
Due to the space limitation, we have only shown three assertions. 
ok 

Setup: Use a valid AMF library handle in amfHandle and valid names 
for the component and proxy component in compName and proxyCompName. 

Test: A call to saAmfComponentRegister(amfHandle, 
compName, proxyCompName) registers the component named compName to 
the AMF library represented by amfHandle.  The call returns SA_OK. 

TR: Test with local component registration. 
error1 

Setup: Use a valid AMF library handle in amfHandle and invalid names 
for the component and proxy component in compName and proxyCompName. 

Test: A call to saAmfComponentRegister(amfHandle, compName, 
proxyCompName) returns SA_ERR_INVALID_PARAM. 

TR: Test with local component registration. 
error11 



First Experience of Conformance Testing 195 

 

Setup: Use a valid AMF library handle in amfHandle and proxy 
component in proxyCompName, and a previously registered component name in 
compName. 

Test: A call to saAmfComponentRegister(amfHandle, 
compName, proxyCompName) returns SA_ERR_EXIST. 

TR: Test with local component registration. 
In addition, there is a table detailing the assertions and their corresponding 

expected Conforming Test Result Codes for each element. 

Element Assertion Conforming Test Result Codes 
ok PASS 
error1 PASS 
error3 PASS 
error5 PASS 
error6 PASS 
error7 PASS 
error8 PASS 
error9 PASS 
error10 PASS, NO_OPTION 
error11 PASS 

saAmfComponentRegister

error12 PASS, NO_OPTION 

4   Implementation Under Test 

The Implementation Under Test used in our work was a carrier-grade service platform 
for mobile communications. A high level block diagram of the platform is shown in 
figure 2. 

Switching node Switching node

Signalling node

Application

Framework library

Signalling node

Application

Framework library

Signalling node

Application

Framework library

…

…

 

Fig. 2. Block diagram of the carrier-grade service platform 



196 F. Tam and K. Ahvanainen 

 

The service platform consists of a number of Signalling and Switching nodes 
interconnected via a high speed network. Collectively these nodes host 3G services. 
In addition, the Switching nodes interface with a routing platform that provides the 
routing and tunnelling functionality. 

On this service platform, only a subset of the AIS AMF APIs was implemented on 
the Signalling node. However, it was based on a pre-release (draft version 0.8) of the 
specification. 

5   Test Method Implementation 

Figure 3 shows the positioning of the Conformance Test Software (CTS) with 
reference to the Test Method Specification during build time and the Implementation 
Under Test during run time. During the execution of the CTS the Framework APIs of 
the IUT are not accessed directly. Instead, an API and error code conversion is 
performed before and after the actual API call. This is because the IUT’s APIs are 
based on an earlier version of the SA Forum API specification and some of the APIs, 
and the error codes they return, have changed in the published specification. The 
conversion is implemented as separate functions and can be removed later, for 
example, when it is not needed anymore after the IUT’s APIs have been upgraded. 

Test
Method

Specification

Conformance
Test

Software

A.1.1 - 0.8
API
and

Error code
Conversion

IUT

Service
Availability
Framework

Manual

Conformance

Log

 

Fig. 3. Conformance test software 
 
At build time, each assertion in the Test Method Specification is implemented as 

one or more tests in the CTS. The number of tests required to be implemented is 
typically derived from a set of conditions separated by the word or in an assertion. 



First Experience of Conformance Testing 197 

 

The table below shows a subset of the test instances generated from the Test 
Method Specification for saAmfComponentRegister(). The parameters of the 
API under test are set accordingly reflecting the specified set of conditions in an 
assertion. 

Tests 

amfHandle compName proxyCompName 

Expected Return 
Code 

OK-1 valid valid not used SA_OK 
E01-1 valid NULL not used SA_ERR_INVALID

_PARAM 

E03-1 uninitialised 
handle 

valid not used SA_ERR_INIT 

E03-2 finalised 
handle 

valid not used SA_ERR_INIT 

E09-1 NULL valid not used SA_ERR_BAD_HAN
DLE 

E11-1 Valid previously 
registered 

not used SA_ERR_EXIST 

The CTS, together with the conversion module, also produce a conformance log on 
the tested instances for off line examination. The following is the log output of one 
instance of assertion error11 for saAmfComponentRegister(): 

Timestamp: 11/11/2003 07:00:00 
  Element: saAmfComponentRegister 
Assertion: error11 
 Instance: 1 
DBG: saFwkInitialise returns 0 
 Prologue: saAmfInitialize : OK 
DBG: registering component name: CompRegE11 
DBG: saFwkComponentRegister returns 0 
 Prologue: saAmfComponentRegister : OK 
DBG: registering component name: CompRegE11 
DBG: saFwkComponentRegister returns 7 
     TEST: OK 
DBG: saFwkFinalise returns 0 
 Epilogue: saAmfFinalize : OK 
   RESULT: PASS 

The log output has the following format: 

“Timestamp:” followed by the test execution date and time in the format of 
“dd/mm/yyyy hh:mm:ss”. 
“Element:” followed by the name of the element, same as the name of the tested 
API. 
“Assertion:” followed by the name of the assertion of this test instance. 
“Instance:“ followed by the instance name of the test assertion. 
“Prologue:” followed by an API name that has been called to create the necessary 
preconditions for the test, followed by “OK” or “NOK” depending on the returned error 
code of such an API. 



198 F. Tam and K. Ahvanainen 

 

“TEST:” followed by “OK” if the return code is as expected, “NOK” otherwise.  
“Epilogue:” followed by an API name that is called to create the necessary post 
conditions for the test, followed by “OK” or “NOK” depending on the returned error 
code of such an API. 
“RESULT:” followed by “PASS”, “FAIL” or “UNRESOLVED” depending on the test 
result and the success of the prologue and epilogue function return code. This result is 
an intermediate result and needs to be examined further. 
“DBG:” These lines will appear in the log output only if “DEBUG” flag is defined in 
the test instance source files. These lines have some debugging information 
depending on the API being tested, for example: 

• Name of the Framework API called for the pre- and/or post-conditions and its 
numeric return value 

• Component name used as a parameter for the API 
• Instance name used as a parameter for the API 

6   Conclusions 

The conformance testing we conducted involved 7 APIs of the AMF. The callback 
functions were deliberately excluded in the first phase of our work. Following the 
guidelines of the IEEE standard, we wrote 55 assertions and implemented 31 test 
instances. Due to the need for the API and error code conversion in our testing, we 
added an extra step to process the Test Result Code.  If the expected return error code 
does not have a mapping to those in the base standard, the Test Result Code is set to 
UNRESOLVED in the final verdict. A test report recording all the verdicts of the 
conformance test for each API was produced. 

Our experience of conformance testing an AIS implementation suggested that 
following the requirements and guidelines of the IEEE standard was indeed feasible.  
By following this process of developing and conducting conformance testing, we are 
able to repeat all the tests and obtaining consistent results. We also believe that at the 
thorough level of testing it has the right balance of confidence and manageability of 
tests. During the review of our test results with the IUT developers, we did not identify 
any falsely passed tests that would have indicated inadequate coverage of the test cases.  
On the contrary, one unexpected outcome was that the intermediate test results provided 
some useful insight into the future implementations for our developers. 

Given the positive experience obtained from this work, we are continuing this 
effort to build a prototype for testing callback functions. In addition, we are exploiting 
the pre- and post-conditions, realised as prologue and epilogue in the implementation, 
in describing higher level scenarios involving multiple components and APIs. 

We have also identified two areas for improvement. Framing the testing around all 
the possible return codes of an API appears to have achieved the goal of considering 
all the success and error conditions. However, there are error conditions, such as those 
indicated by SA_ERR_LIBRARY, that have a high level of implementation 
dependency. Therefore, there is a need to clearly define what should be included and 
excluded from the test definitions in order to avoid imposing any kind of structure 
onto an implementation. This of course has to be conducted within the Service 
Availability Forum in conjunction with the definition of the AIS compliance criteria. 



First Experience of Conformance Testing 199 

 

The second improvement is related to the way in which the Test Method 
Specification is expressed. Using an informal, natural language such as English to 
capture the assertions is far from precise. We studied the use of ETSI’s Testing and 
Test Control Notation version 3 (TTCN-3) [5] and the preliminary conclusion was 
that it was a potential candidate as a replacement. Although the core language itself is 
big, a subset of the constructs and the Runtime Interface [6] are thought to be 
applicable to our work. Further investigation is required and this may prove to be a 
candidate with the potential of bringing in the whole tool chain for the testing 
environment as well as the capability of automatically generating test cases from the 
Test Method Specification. 

Acknowledgement 

This work was funded by System Technologies, Nokia Networks under projects 
HA2003 and HARouter.  We would also like to thank the iNOS Service Availability 
Framework development team for their technical support. 

References 

1. Service Availability Forum: http://www.saforum.org. 
2. Service Availability Forum: Hardware Platform Interface Specification, SAI-HPI-A.01.01 

(2002). 
3. Service Availability Forum: Application Interface Specification, SAI-AIS-A.01.01 (2003). 
4. IEEE Std 2003-1997: Requirements and Guidelines for Test Method Specifications and Test 

Method Implementations for Measuring Conformance to POSIX® Standards (1998). 
5. ETSI ES 201 873-1 (V2.2.1): Methods for Testing and Specification; The Testing and Test 

Control Notation version 3; Part 1: TTCN-3 Core Language (2003). 
6. ETSI ES 201 873-5 (V1.1.1): Methods for Testing and Specification; The Testing and Test 

Control Notation version 3; Part 5: TTCN-3 Runtime Interface (2003). 



 

M. Malek et al. (Eds.): ISAS 2004, LNCS 3335, pp. 200–212, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

On the Use of the SA Forum Checkpoint and 
AMF Services 

Stéphane Brossier, Frédéric Herrmann, and Eltefaat Shokri 

Sun Microsystems 
{stephane.brossier, frederic.herrmann, eltefaat.shokri}@sun.com 

Abstract. In an environment where hardware and software errors may take an 
application down, high levels of service availability can be obtained by 
combining redundant hardware infrastructure with powerful application 
management frameworks which are able to detect these errors and recover from 
them. The Service Availability Forum (SAF) Application Interface 
Specification (AIS) defines interfaces used by the application management 
framework (AMF) to control applications placed under their supervision.  The 
main goal of the AMF is to guarantee that for a given service there is always at 
least one instance of an application providing the service.  In most cases the 
application implementing a service also encapsulates some data which is critical 
for the availability of the service. This data (called the application state) has to 
be preserved in a way that if the application providing the service fails, the 
replacing application can restore the application state and continue providing 
the service with minimal service disruption. The SAF AIS defines interfaces 
(named checkpoint interfaces) by which the application can save and restore its 
state.  This paper describes the use of SAF AMF and checkpoint services in 
implementing applications providing highly-available services. The use of 
AMF and checkpoint services for implementing applications with the 2N or N-
way active redundancy models is presented in the paper. It briefly discusses the 
interactions between the application, and AMF/checkpoint services during both 
(i) fault-free operations, as well as (ii) the error recovery procedures. The paper 
also suggests the most suitable checkpoint options for both of these redundancy 
models, depending on the tradeoff between protecting the integrity of the 
application state and the overhead of state saving/restoration by the application. 

1   Introduction 

This section introduces the need for state-full application failover as a mean to 
increase service availability. It also positions the Service Availability Forum (SAF) 
Checkpoint Service and SAF Availability Management Framework service as 
adequate facilities to support state-full application failover. 

As stated in [1], the Service Availability Forum is an industry coalition of 
computer and communication companies dedicated to producing standard 
specifications that enables the development of carrier-grade systems based on 
commercial hardware platform, and operating systems.  The SA Forum has developed 
an interface specification, named Application Interface Specification (AIS), for high-
availability middleware. The AIS defines APIs needed for developing highly 



On the Use of the SA Forum Checkpoint and AMF Services 201 

 

available services. The Availability Management Framework and Checkpoint 
Services, the subject of this paper, are among the SA Forum AIS APIs.   

1.1   Increase in Service Availability 

In an environment where hardware or software errors can take an application down, 
high levels of service availability (for high availability systems, see for example [2,3]) 
can be obtained by combining a redundant hardware infrastructure with powerful 
application Availability Management Frameworks (AMF) [4]. The AMF  can detect 
these errors and recover from them. The Service Availability Forum Application 
Interface Specification (AIS) defines the interfaces used by such  AMF ‘s to control 
applications placed under their supervision. The AMF ensures that for a given service 
there is always at least one instance of an application active and providing that 
service. Consider applications as being grouped in two main classes: 

• single active instance” applications: The application has been architectured in such 
a way that only one single active instance of the application can provide service at 
any given time. When this active instance fails, another instance must be activated 
(either by creating a new instance or by activating an existing instance). The SAF 
2N and N+M AMF redundancy models support such applications. 

• “multiple active instance” applications: The application has been architectured in 
such a way that multiple active instances of the application can provide service in 
parallel. When one active instance fails, other instances continue to provide the 
service. The AMF ensures that there is an appropriate number of active application 
instances. The N-way active and N-way AMF redundancy models have been 
designed to support such applications. 

In most cases, a service  encapsulates data: either global data for the entire service 
or specific data attached to each client of the service. A subset of this data needs to be 
persistent and stored on highly available disk subsystems (and backup archives). A 
second subset is more volatile and does not  require this level of persistency,  as in the 
case of call setup information or shopping cart contents. In the context of this paper, 
the volatile part of the service data is called the “application state”. 

To maximize service availability, both persistent application data and application 
state must be preserved through error recovery. Preserving application state through 
error recovery is often referred to as “state-full application failover capability”. 

1.2   Support for State-Full Application Failover 

To support a state-full application failover, there should be a facility in the system for 
saving and restoring the application state across application and/or node failures. The 
application state can be preserved using the same techniques (and interfaces) as  those 
used for the persistent data. However, the performance penalty for using these 
techniques is usually too high and so it is preferable for applications  to replicate their 
state in the main memory of different nodes avoiding disk access. 

Application state saving/restoration can be done in one of the following ways: 

• Application-transparent state save and restoration:  Under this approach, the 
memory segments (e.g., stack, and global variables) of the processes that constitute 
the application are considered the state of the application. This state is transparently 
transferred from one node to another node in the system, so that if the application 
on one node fails (e.g., crashes), then the underlying system on another node can 



202 S. Brossier, F. Herrmann, and E. Shokri 

 

spawn another application (or more specifically the processes of the application). 
This new application has the same state as the failed application. Although 
transparency is a highly-desired feature of this approach, it usually imposes a non-
negligible overhead. For complex applications, the state of the application is much 
smaller than the sum of all memory segments of its processes. 

• Message-based checkpointing:  In this approach, the application is fully responsible 
for transferring its state (incrementally or one-shot)  through the use of messages 
sent directly to its standby partners. This approach naturally increases the 
complexity for the application developer to ensure that the application state is 
reliably transferred to the standby partners, even when failures occur. Moreover, 
bringing up a new standby instance of the application and making its state 
consistent with other active participants in the service without a major effect on the 
service performance is a very complex issue. 

• Storage checkpointing: In this approach, highly-available applications save and 
propagate their state by one of the following approaches: 

- Conventional database solutions (usually in-memory databases): This approach 
simplifies the application development compared to the message-based 
checkpointing solution. However, it might not support adequate performance for 
the save/restoration of the application states for time-critical applications such as 
telecommunication applications. 

- Specialized checkpoint services: The logic behind this approach is that the 
conventional database solutions might not fully satisfy the need of time-critical 
applications because they might demand higher performance which cannot be 
satisfied by general-purpose databases which enforce strong ACID properties [6]. 

• Checkpoint services emphasize fast save and restoration of application-specified 
state over other criteria such as stronger semantics. Checkpoint services normally 
offer high-level specialized interfaces for reading and updating checkpoints. They 
also ensure that the data stored in the checkpoint are transparently replicated on 
multiple nodes in the system. 

The SAF Checkpoint API [5] is defined as a standard interface for such specialized 
checkpoint services. It is important to mention that it is not intended for the SAF 
checkpoint service to provide transactional properties. It is mainly targeting a fast 
transfer of state between applications.  

If a 2N redundancy application uses AMF and checkpoint services, the application 
will have the following desirable capabilities: 

• Fast restart of state-full applications on the same node: The active application 
keeps track of its state by writing into the checkpoint locally. If the active 
application fails and is restarted on the same node by the clustering software,  the 
application can use the local copy of the checkpoint to re-create its state. Since the 
checkpoint is stored in memory on the local node, the restart operation is very 
efficient. 

• Seamless failover/switchover: An active application keeps track of its state by 
writing into a checkpoint. The application state is transferred to the nodes where 
the standby partners reside. If the primary fails and the clustering software decides 
to failover the application, then one of the standby applications will take over and 
will use the local copy of the checkpoint to recreate its state, efficiently. 

The benefits of using this combination of services will be discussed in Section 3. 



On the Use of the SA Forum Checkpoint and AMF Services 203 

 

2   Main Characteristics of the Checkpoint API 

This chapter provides a brief description of the SAF checkpoint features and 
characteristics.  Detailed description of these characteristics can be found in [5]. 

2.1   Structure of a Checkpoint 

Checkpoints are implemented as a set of checkpoint replicas. Several instances of 
these replicas are kept by the checkpoint service to ensure checkpoint redundancy. 
There cannot be more than one replica of a given checkpoint on a cluster node.  The 
number of replicas can be configured as part of the checkpoint configuration. The 
SAF Checkpoint API does not put any limitation on the number of replicas per 
checkpoint, however in the context of this discussion we assume that most 
implementations will limit the number of replicas to a small number per checkpoint as 
the cost of maintaining too many replicas would be prohibitive. 

Checkpoints are structured as a set of sections that can be created and deleted 
dynamically by processes. A process can create sections of various sizes.  Each 
section can be considered as a time-dependent and interrelated set of information 
(e.g., session information on an application server or call information in call 
processing applications).  Each section has an expiration time which is used by the 
checkpoint service to automatically delete the section when it expires. 

2.2   Checkpoint Options 

Checkpoints can be created/opened with different options. These options can be 
combined together to fit different usage patterns. 

The two classifications for the checkpoint options are: 

(i) Classification of checkpoint based on the control over the location of replicas 
Checkpoints can be opened with the 'collocated' or 'non collocated' attribute [5]. 
When the collocated attribute is used, it means that a replica is created on the node 
where the open operation takes place (which is the node where the application is 
running). The application has control over the location (and number) of 
checkpoint replicas by opening the checkpoint on appropriate nodes. It should be 
noted that the maximum number of replicas per checkpoint supported by a 
particular checkpoint service implementation puts a limit on the number of nodes 
where applications can access a particular checkpoint in collocated mode. If an 
implementation supports a maximum of two replicas per checkpoint, that 
checkpoint can only be accessed in collocated mode on up to two nodes at a given 
time. The application is also responsible for choosing the node where the active 
replica (the replica where the update is written first) is located. 

If the collocated attribute is not used, the locations, the number of the replicas and 
the choice of an active replica are the responsibility of the checkpoint service (but 
might be constrained by some checkpoint configuration attributes). 

(ii) Classification of checkpoint based on the semantics of updates Checkpoints can 
be created as synchronous or asynchronous: 

 



204 S. Brossier, F. Herrmann, and E. Shokri 

 

• In the synchronous mode, the update operation (write, creation of a new 
section, deletion of an existing section) is performed on all the replicas before 
returning the call. 

• In the asynchronous mode, only one replica (called the active replica) is 
updated when the update call returns. The other replicas are updated 
asynchronously by the checkpoint service. The SAF Checkpoint API provides 
two variants of asynchronous mode but this paper does not go into that level 
of detail. 

The important difference between the synchronous and asynchronous modes is that 
in the case of asynchronous updates the non active replicas could be slightly out of 
date compared to the active replica. If the node containing the active replica fails, the 
latest updates might not have been propagated to all replicas at the time of the failure. 
An application instance taking over the service on another node needs to be 
architectured to cope with this possible state loss (its internal state might be slightly 
out of sync with the latest interactions it had with some of its clients). 

2.3   Combination of Different Checkpoint Options 

This section compares the strengths and weaknesses of different combinations of 
checkpoint options.  

• Asynchronous and Collocated Checkpoint: 
This combination achieves better update performance by relaxing the synchronicity 
of updates.  It is the best suited combination for applications that are performance 
critical but can cope with occasional losses of checkpoint updates. A leading 
example is call processing applications.  These applications demand sub-second 
fault-recovery latency but can cope with occasional loss of calls in the event of rare 
and complex failures in the system. The 2N redundancy model fits well with this 
combination and will be discussed further in Chapter 3.   The asynchronous/non-
collocated combination offers the following advantage: 

- Best performance: The combination of the asynchronous mode with the 
collocated attribute provides a very fast update capability compared to other 
combinations.  The main reason for the significant improvement in the 
performance is because updates are done synchronously only on the local 
replica. This avoids any synchronous remote communication and therefore 
offers the maximum performance for update operations. 

However, this combination suffers from the following weaknesses: 

- Possible loss of successfully-returned updates:  If the active replica is lost (for 
example due to a node failure), there is a possibility of losing some of the latest 
information since other replicas might not have received the latest updates.  
However, more effective implementations can reduce the probability of these 
losses.  

- Limited application scalability: The number of nodes where the application can 
open the checkpoint is limited to the maximum number of replica supported per 
checkpoint. 

- Active replica chosen by the application: Some complexity is added to the 
application as it is responsible for designating the location of the active replica. 



On the Use of the SA Forum Checkpoint and AMF Services 205 

 

• Asynchronous and Non-Collocated Checkpoint: 
 This combination of options is suitable when an application's two most important 

requirements are update performance and application scalability. An example is 
an application with multiple instances active in parallel as in the N-way active 
redundancy model. This combination of options offers the following advantages: 

- Improved performance: The asynchronous mode still offers some 
performance since only one replica is updated synchronously. However, as 
the active replica location is chosen by the checkpoint service it might be 
located on a node other than that running the application. Also, the operation 
of updating this replica is more costly than in the collocated case.  So, we do 
not recommend this for small-scale applications with high performance 
requirements.  

- Application scalability:  The non-collocated attribute ensures that there can 
be any number of applications running on different nodes and accessing the 
same checkpoint even when the implementation limits the number of replicas 
per checkpoint to two. In other words, the redundancy level of the 
application is not bound to the redundancy level of the checkpoint. 

- Replica management is transparent to the application:  Since the checkpoint 
service automatically handles operations such as creating a new replica, and 
selecting the active replica, the application is simplified.   

However, this combination suffers from the following weakness: 

- Possible loss of successfully-returned updates: See 
Asynchronous/Collocated. 

• Synchronous and Collocated Checkpoints: 
This combination provides some performance improvement as replicas are 
collocated with the instances of the application using the checkpoint. It is best 
suited to applications that cannot cope with the possible loss of checkpoint 
updates during node failures. This combination offers the following advantage: 

- No loss of successfully-returned updates: Since the update operations are 
synchronous, when an update call returns the checkpoint service guarantees 
that the update is successfully propagated into all the replicas.  In other 
words, when there are no ongoing update operations, all replicas are 
identical.  Therefore, if one replica is lost (for example, as a result of a node 
crash), other replicas can be still used and the service can continue with the 
latest updates and with no, or minimal, delay in the service.  

However, this combination suffers from the following weaknesses: 

- Performance penalty:  As discussed earlier, the synchronous semantics 
impose a performance penalty for update operations. This penalty is 
minimized because one replica is local. Checkpoint read operations, 
performed when a standby takes over, are optimal as there is a guarantee of a 
local replica.  

- Limited application scalability:  See Asynchronous/Collocated case. 
- Active replica chosen by the application:  See Asynchronous/Collocated 

case. 



206 S. Brossier, F. Herrmann, and E. Shokri 

 

• Synchronous and Non Collocated Checkpoints: 

This combination is the simplest for applications to use because it provides the 
strongest update semantics and the application does not need to handle the 
management of the checkpoint replicas.  Additionally, the number of application 
instances is not limited to the number of replicas of a checkpoint.  However, this 
combination might exhibit weaker performances compared to previous 
combinations. This combination offers the following advantages: 

- No loss of successfully-returned updates: See Synchronous/Collocated case. 
- Replica management is transparent to the application: As discussed above 

for Asynchronous/Non Collocated. 
- Application scalability: As discussed above for Asynchronous/Non 

Collocated. 

However, this combination suffers from the following weakness: 

- Performance penalty: Update operations take longer since all the replicas 
have to be updated synchronously before the update call can return to the 
application.  This makes the service less performant in fault-free 
environments. Also the taking over of the service by the standby application 
can take longer as reading the checkpoint might require access to a remote 
replica. 

3   Checkpoint Services in 2N Redundancy Applications 

Under the 2N redundancy model, in its simplest form, there is one active instance of 
the application providing service, with one standby instance running and ready to take 
over when the active application fails.  The vast majority of 2N redundant 
applications have states, and  for the standby to continue the required service 
effectively, the state of the application should be retrieved by the standby before it can 
take over the service. An effective way of implementing state-full 2N redundant 
applications is to use of the SAF AMF and checkpoint services, as illustrated in this 
chapter. 

3.1   Suitability of Checkpoint Options to 2N Applications 

The semantics of the SAF checkpoint service is more suited to the model where the 
standby application reads the checkpoint only when it is asked to take over the 
service. This type of standby is usually called a warm standby. The SAF checkpoint 
service does not offer an easy way of implementing a hot standby application where 
the standby application has the most updated state as soon as the state is stored in the 
checkpoint service by the active application. This is mainly because the standby 
application does not get notification of checkpoint updates.  

As denoted in the SAF Specification (and discussed briefly in Chapter 2 of this 
paper), the checkpoint service offers various checkpoint options. The most suitable 
option for a 2N redundant application is a collocated checkpoint with the 
asynchronous update option for the following reasons: 

 



On the Use of the SA Forum Checkpoint and AMF Services 207 

 

• Fast update of the checkpoint by the active application: Assuming that the active 
replica (the one on which the update operation is performed synchronously) of the 
checkpoint is collocated with the active application, then a checkpoint update will 
be very quick compared to the other options, because an update does not involve 
heavy operations such as inter-node communications and inter-replica 
synchronization. This increases the service performance in a fault-free 
environments. In general, it is very important for any high-availability solution to 
maintain the service performance in fault-free environment. 

• Fast restoration of the application state by the newly-elected active application: 
Since a replica of the checkpoint is located in the standby application node, then 
when the standby becomes active, it can quickly read the most up-to-date state of 
the application from the local replica. No network operation is needed for this. 

However, as explained in Section 2, with the asynchronous option there is no 
guarantee that all replicas of the checkpoint have been updated when an update 
operation returns. Therefore, there is a risk that the newly-elected active node does 
not have all of the latest updates made by the failed active application. As a result, the 
service developer has to make a tradeoff between synchronous and asynchronous 
updates: “preventing the loss of state” or “fastest write in the checkpoint”. In the 
discussions in the rest of this chapter we will assume an asynchronous update mode. 

3.2   Application Interactions with the Checkpoint Services 

This section describes the normal interactions of the active and standby applications 
with the checkpoint and AMF services. 

• Active application: When an application instance is about to become active, it 
opens the checkpoint for the purpose of writing, if it has not opened the checkpoint 
before. If there is no local replica for this checkpoint, the checkpoint service will 
automatically create a local replica before returning from the open call. The active 
application should set the local replica to be the active replica of the checkpoint. At 
this point the active application is ready to provide the specified service. When the 
application receives a request from a client to perform a service, it executes the 
request and updates the checkpoint when appropriate.  

• Standby application: The standby application opens the checkpoint for the purpose 
of reading its content. If there is no local replica of the checkpoint on the node, 
then the checkpoint service automatically creates a local replica before returning 
from the open call. After opening the checkpoint, the standby application waits for 
an order from the AMF to become active. The standby application is not involved 
in keeping its local replica up-to-date as this is done automatically by the 
checkpoint service. It is important to note that the standby application may read the 
checkpoint whenever it wishes, but the checkpoint service does not have any 
information for the reader application about the updates on the checkpoint. 
Therefore, it is difficult for the standby to obtain incremental changes in the state.  

As shown in Figure 1, the active application is responsible for setting the active 
replica of the checkpoint. If the local replica of the active application is not set active 
by the application, then the checkpoint updates will not be optimized for performance. 



208 S. Brossier, F. Herrmann, and E. Shokri 

 

Fig. 1. The Use of AMF and Checkpoint Service for 2 N Redundant Applications 

3.3   Responses to Failures or Administrative Operations 

This section describes how a change of HA state by the AMF affects the way a 
particular application instance accesses its checkpoint according to its new HA state. 

3.3.1   Failure of the Active Application  
As specified in the SAF AMF Specification, the system administrator can configure 
the AMF so that the first few failures of an active application do not cause an 
application failover but simply a local application restart (meaning that the failed 
application does not lose its active status). However, after a configurable number of 
consecutive failures in the active application, the active application will lose its active 
state. We discuss here how the application and the clustering software (i.e., AMF and 
checkpoint service) react in each of these two cases: 

• Restart of the failed active application: In this case, the active application is 
restarted on the same node and is made active by the AMF. The active application 
then reads the checkpoint and updates its internal state accordingly. Assuming that 
the retention time of the checkpoint was properly setup, the checkpoint replica 
should still be present (and up-to-date) on the node when the application restart 
completes. So in this case, the checkpoint service does not need to fetch any data 
from a remote node and the recovery of the application state is local and fast. 

• Failover of the service: Based on the service configuration (or some other global 
information), the AMF may decide that the service should be failed over from the 
failed active application to its standby partner. In this case, the standby application 
gets a notification from the AMF to become active. Upon receipt of such a 
notification, the standby application performs the following actions: 

 -  Read the content of the checkpoint and update its internal state accordingly. 
 - Set the local replica to be the active replica. 
 -  Start acting as the active application and resume provision of service to its 

client. This might trigger new updates in the checkpoint where needed. 
After the recovery completes (i.e., the standby took over the active role), the 
AMF might start another instance of the application (either in the failed 



On the Use of the SA Forum Checkpoint and AMF Services 209 

 

application node or another node in the cluster) and make it a new standby. 
When this newly started application is asked by the AMF to become standby, 
the application opens the checkpoint. If there is no replica of the checkpoint on 
the node where the standby application runs, then the checkpoint service creates 
a local replica of the checkpoint before returning from the open call. Therefore, 
after returning from the open call, the application becomes standby and waits to 
be told by the AMF to take over the active role. 

3.3.2   Failure of the Standby Application 
When the standby application fails, depending upon the service configuration, the 
AMF may perform one of the following recovery operations: 

• Restart of the failed application: In this case, the failed application will be restarted 
and be made standby by the AMF. 

• Failover of the standby application: In this case, another instance of the application 
will be made standby (during which the application will open the checkpoint). If 
there is no local replica of the checkpoint in the node where the new standby 
application is located, then a local replica will be created there.  

3.3.3   Application Switchover 
There are situations where the AMF decides to move the active service to the standby 
application, even when the current active application does not demonstrate any sign of 
ill health. Such a situation could be to perform a hardware upgrade on the nodes 
where the active application runs. In these situations, both active and standby 
applications collaborate with the AMF for a seamless transfer of the active service 
from one node to another. The steps that an active application (A1) and a standby 
application (A2) go through are as follows: 

1. A1 made QUIESCED: Before entering the QUIESCED state (See [4] for the 
definition), A1 updates the checkpoint so that its last state is recorded in the 
checkpoint. It, then, notifies the AMF of its success in going into QUIESCED 
state. 

2. A2 made active: After successful completion of Step 1, the AMF orders A2 to 
become active. A2 goes through the procedure of becoming active as discussed in 
Section 3.3.1 and notifies the AMF of its success. 

3. A1 made out-of-service: Finally after successful completion of Step2, the AMF 
removes the service from A1. In this step, A1 closes the checkpoint. 

The cases where some of these steps fail are out of the scope of the paper. 

3.4   Redundancy Models Similar to 2N 

Based on this usage example in the context of a simple the 2N redundancy model, it 
should be noted that the usage of collocated checkpoints (in asynchronous or 
synchronous mode) is best suited to execution environments where there is a single 
application writing to the checkpoint and where the location of the standby 
applications is already known before recovery takes place.  

Without going in too much details about AMF concepts, we want to recommend 
that applications use one separate checkpoint for each component service instance [4]. 
An application handling several component service instances in parallel would 
manage as many checkpoints as the number of component service instances.  



210 S. Brossier, F. Herrmann, and E. Shokri 

 

In all 2N, N+M and N-way redundancy models currently defined in the AMF 
Specifications, only one component is active for a component service instance at a 
given time and a few other components are standby for the same component service 
instance. The number of components on standby is likely to be very small, consistent 
with the limitations put on the number of replicas per checkpoint by the checkpoint 
service. Hence in all these models, using collocated checkpoints for each component 
service instance seems the most appropriate choice. 

4   Checkpoint Service in N-Way Active Redundancy Model  

The N-way active redundancy model differs from other models defined by the AMF 
in that several instances of the application can be active in parallel providing a single 
service. All active applications open the same checkpoint and use it to save/retrieve 
their state as needed.  

In a call processing environment or in a web server environment for instance, the 
clients connect to one of the active applications for the duration of the session. The 
active application creates a temporary zone (section) in the checkpoint, which is used 
to save the content of the current session. 

Fig. 2. The Use of Checkpoint in N-Way Active Redundancy Model (Client View) 

Figure 2 depicts a cluster where a client opens a session 'S1'. The load balancer 
chooses the active application on Node 1 (A1) to handle the current session. A1 
creates a new section 'Section1' in the checkpoint. Each new request emitted by the 
client contains an identifier for the opened session 'S1'. The load balancer forwards 
the request to the application A1, and this one updates the section 'Section1' and 
replies to the client. If everything goes fine, the client ends up by closing the session, 
and A1 destroys the section 'Section1' in the checkpoint.  

If A1 crashes before the session terminates, for instance if it crashes after the 
request R1, the AMF can either restart A1 on the same node, or restart it on a different 



On the Use of the SA Forum Checkpoint and AMF Services 211 

 

node. The client does not see this failure, and when it sends the request R2, the load 
balancer either forwards R2 to A1 if it has been restarted on the same node, or to a 
different active application (A2 on node 2). The active application which receives R2 
(or R2') uses the session identifier to figure out that there is a current open session 
related to this request. It uses the checkpoint API to read the section 'Section1', and 
retrieves the current state of the session. At this point, it handles R2, updates  
'Section1', and replies to the client 

In this model, only one given active application handles a session at any given 
time. Therefore, the section in the checkpoint associated to the current session is 
modified by only one active application at a given time, and there is no need for 
synchronization between the active applications.  In this N-way active model, the 
application should use non-collocated checkpoints so that application scalability is not 
limited by the number of replicas supported by a particular checkpoint service 
implementation. 

Fig. 3. Use of Non Collocated Checkpoints in an N-Way Active Redundancy Model 

Figure 3 depicts a five node cluster. The service is composed of three active 
components relying on the checkpoint service to maintain the checkpoint replicas. In 
this case, the checkpoint service maintains two replicas. If the active applications 
create a synchronous checkpoint, both replicas are updated synchronously. If it 
creates an asynchronous checkpoint, only one replica (i.e., the active replica) is 
updated synchronously and the other is updated by the checkpoint service in the 
background. 

5   Concluding Remarks 

The paper discusses the position of the SAF Checkpoint API relative to other 
checkpointing alternatives. It claims that the checkpoint service provides optimum 
performance for time-critical applications that can cope with occasional losses of 
checkpoint updates that can occur due to node failures. The paper also identifies 
several combinations of checkpoint options and discusses the pros and cons in each 



212 S. Brossier, F. Herrmann, and E. Shokri 

 

case. The paper also illustrates how to combine the SAF AMF and the checkpoint 
service for implementation of the 2N and the N-way active redundancy models. As 
shown in the paper, the SAF Checkpoint API is well suited to support cold and warm 
standby models. 

References 

1. Jokiaho, T., Herrmann, F., Penkler, D., and Moser, L.: The SA Forum Application Interfaces 
Specification, RTC, June 2003. 

2. Laprie, J. C., Arlat, J., Beounes, C., Kanoun, K.: Definition of Hardware and Software 
Fault-Tolerance: Definitions and Analysis of Architectural Solutions, IEEE Computer, July, 
1990. 

3. Powell, D.: Delta-4: A generic Architecture for Dependable Distributed Computing, in 
Research Notes ESPRIT (Vol. 1), Springer-Verlag, May 1991. 

4. Service Availability Forum Application Interface Specification: Availability Management 
Framework API , April 2002. 

5. SA Forum Application Interface Specification: Checkpoint Service, April 2002. 
6. Garcia-Molina, H.,  Ullman, J. D., Widom, J.:  Database Systems, Prentice Hall, 2001. 



Author Index

Ahvanainen, Kari 190
Arun, S.G. 17

Bondavalli, Andrea 160
Bozinovski, Marjan 33
Brossier, Stéphane 200

Dague, Sean 48
Di Giandomenico, Filicita 160
Drake, Sam 1

Herrmann, Frédéric 200
Horbank, Matthias 134
Hu, Wei 1

Ibach, Peter 134

Jhumka, Arshad 148
Johansson, Andréas 148

Kwon, Min–Hee 118

Laiho, Kyösti 175
Larsen, Kim 33
Liu, Xiliang 101
Lollini, Paolo 160

McInnis, Dale M. 1

Neises, Jürgen 73

Park, Jong–Tae 118
Porcarelli, Stefano 160
Prasad, Ramjee 33

Ravindran, K. 101
Reinecke, Philipp 86
Reisinger, Heinz 61
Renier, Thibault 33

Sârbu, Adina 148
Schwefel, Hans–Peter 33
Seidl, Robert 33
Shokri, Eltefaat 200
Sköld, Martin 1
Srivastava, Alok 1
Suri, Neeraj 148

Tam, Francis 190
Thalmann, Lars 1
Tikkanen, Matti 1
Torbjørnsen, Øystein 1

van Moorsel, Aad 86

Wolski, Antoni 1, 175
Wolter, Katinka 86


	Frontmatter
	ISAS 2004
	Architecture of Highly Available Databases
	Data Persistence in Telecom Switches
	Distributed Redundancy or Cluster Solution? An Experimental Evaluation of Two Approaches for Dependable Mobile Internet Services
	OpenHPI: An Open Source Reference Implementation of the SA Forum Hardware Platform Interface
	Quality of Service Control by Middleware
	Benefit Evaluation of High-Availability Middleware
	A Measurement Study of the Interplay Between Application Level Restart and Transport Protocol
	Service-Level Management of Adaptive Distributed Network Applications
	A Methodology on MPLS VPN Service Management with Resilience Constraints
	Highly Available Location-Based Services in Mobile Environments
	On Enhancing the Robustness of Commercial Operating Systems
	A Modular Approach for Model-Based Dependability Evaluation of a Class of Systems
	Rolling Upgrades for Continuous Services
	First Experience of Conformance Testing an Application Interface Specification Implementation
	On the Use of the SA Forum Checkpoint and AMF Services

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




